Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

30 data tables

Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

More…

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

0 data tables

Near-threshold Photoproduction of Phi Mesons from Deuterium

Qian, X. ; Chen, W. ; Gao, H. ; et al.
Phys.Lett.B 696 (2011) 338-342, 2011.
Inspire Record 875788 DOI 10.17182/hepdata.56870

We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections $\frac{d\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic $\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\phi$ mesons.

1 data table

Differential cross section as a function of ABS(T-TMIN).


Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0

The CLAS collaboration Dey, B. ; Meyer, C.A. ; Bellis, M. ; et al.
Phys.Rev.C 82 (2010) 025202, 2010.
Inspire Record 857728 DOI 10.17182/hepdata.55696

High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.

149 data tables

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.

More…

Differential cross section of gamma n to K+ Sigma- on bound neutrons with incident photons from 1.1 to 3.6 GeV

The CLAS collaboration Pereira, S.Anefalos ; Mirazita, M. ; Rossi, P. ; et al.
Phys.Lett.B 688 (2010) 289-293, 2010.
Inspire Record 841145 DOI 10.17182/hepdata.38239

Differential cross sections of the reaction gamma d to K+ Sigma- (p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E_gamma ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For E_gamma > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.

25 data tables

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.15 GeV.. Errors contain both statistics and systematics.

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.25 GeV.. Errors contain both statistics and systematics.

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.35 GeV.. Errors contain both statistics and systematics.

More…

Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

The CLAS collaboration McCracken, M.E. ; Bellis, M. ; Meyer, C.A. ; et al.
Phys.Rev.C 81 (2010) 025201, 2010.
Inspire Record 840934 DOI 10.17182/hepdata.54967

We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

241 data tables

Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.

Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.

Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.

More…

Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

104 data tables

Differential cross section for the W range 1.68 to 1.69 GeV.

Differential cross section for the W range 1.69 to 1.70 GeV.

Differential cross section for the W range 1.70 to 1.71 GeV.

More…

Differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$

The CLAS collaboration Williams, M. ; Applegate, D. ; Bellis, M. ; et al.
Phys.Rev.C 80 (2009) 065208, 2009.
Inspire Record 829180 DOI 10.17182/hepdata.52667

High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

221 data tables

Differential cross section for the W range 1.72 to 1.73 GeV.

Differential cross section for the W range 1.73 to 1.74 GeV.

Differential cross section for the W range 1.74 to 1.75 GeV.

More…

Photoproduction of $\pi^+ \pi^-$ meson pairs on the proton

The CLAS collaboration Battaglieri, M. ; De Vita, R. ; Szczepaniak, A.P. ; et al.
Phys.Rev.D 80 (2009) 072005, 2009.
Inspire Record 825040 DOI 10.17182/hepdata.74824

The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.

198 data tables

Moments YLM(LM=00) of the di-pion angular distribution for -T.

Moments YLM(LM=00) of the di-pion angular distribution for -T.

Moments YLM(LM=00) of the di-pion angular distribution for -T.

More…

Substructure dependence of jet cross sections at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Loizides, J.H. ; et al.
Nucl.Phys.B 700 (2004) 3-50, 2004.
Inspire Record 650732 DOI 10.17182/hepdata.46136

Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.

31 data tables

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with -1 < ETARAP(C=JET) < 2.5.

More…