Color coherence effects in pp¯ collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence.
Observed normalised transverse energy distribution of the leading (highest ET) jet.. Data read from plot in the preprint.
Observed normalised transverse energy distribution of the second highest ET jet.. Data read from plot in the preprint.
Observed normalised pseudorapidity distribution of the third highest ET jet.. Data read from plot in the preprint.
Subthreshold ¯p andK− and energeticπ− production was studied in Ne + NaF, Cu, Sn and Bi, and in Ni + Ni collisions with incident energies between 1.6 and 2 GeV/u. The measured cross sections indicate a dominant contribution of baryonic resonances. This is also consistent with a generalized scaling behaviour of the cross sections with the energy available in the collision and the energy necessary to produce particles as observed with Ne induced reactions. Deviations from scaling especially pronounced in the Ni-Ni system will be discussed in terms of absorption effects. The flat slope of the excitation function for ¯p production can be related to a reduced production threshold caused by a reduction of the antiproton mass in the dense and heated medium by about 100—150 MeV/c2. A similar in-medium mass reduction is also indicated forK− mesons. An increased ¯p reabsorption probability for the heavier systems is concluded from the comparison of the ¯p yields in Ne + NaF, Ne + Sn and Ni + Ni collisions.
TARGET IS NAF.
No description provided.
No description provided.
The total and the differential cross sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP using an integrated luminosity of 36.9 pb −1 . The results agree with the QED predictions and consequently there is no evidence for non-standard channels with the same experimental signature. The lower limits obtained on the QED cutoff parameters are Λ + > 143 GeV and Λ − > 120 GeV, and the lower bound on the mass of an excited electron with an effective coupling constant λ γ = 1 is 132 GeV/ c 2 . Upper limits on the branching ratios for the decays Z 0 → γγ , Z 0 → π 0 γ , Z 0 → ηγ and Z 0 → γγγ have been determined to be 5.5 × 10 −5 , 5.5 × 10 −5 , 8.0 × 10 −5 , and 1.7 × 10 −5 respectively. All the limits are at the 95% confidence level.
1990 energies are 88.223, 89.222, 90.217, 91.217, 92.209, 93.208 and 94.202 GeV.. 1991 energies are 88.465, 89.460, 90.208, 91.225, 91.954, 92.953, and 93.703 GeV.. 1992 energy is 91.278 GeV.
Average of all data.
No description provided.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.
No description provided.
The reactions γp→K+ Λ and γp→K+ Σ0 have been measured with the multiparticle detector system SAPHIR at ELSA in Bonn. Besides the differential cross sections the Λ polarization and, for the first time, the Σ0 polarization have been determined in a photon induced reaction. All data are presented as functions of the photon energy (from threshold up to 1.47 GeV) and of the kaon production angle (0°–180°). The polarization of both Λ and Σ0 is substantial at all energies and varies strongly with the production angle.
Differential cross sections.
Total cross sections.
Differential cross sections.
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
An experiment has been performed with the Fermilab 30-inch bubble chamber and Downstream Particle Identifier to study inclusive charged pion production in the high energy interactions of π±,K+,p and\(\bar p\) with thin foils of magnesium, silver and gold. The laboratory rapidity and transverse momentum distributions are presented separately for π+ and π− production. Comparisons are made with data from hadron-proton interactions and theA dependence of the cross sections in the different kinematic regions is discussed. We investigate the dependence of the cross sections on the number of observed protons ejected from the nucleus. By using our π−A data from two different beam energies, we study the energy dependence of these spectra. Comparisons are made with the VENUS string model Monte Carlo.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.
Errors include statistical and systematic uncertainties.
The reaction p p → Λ Λ → p π + pπ − is studied in the experiment PS185 at the CERN Low Energy Antiproton Ring (LEAR). A precise measurement of the excitation function in the immediate threshold region below 6 MeV excess energy was achieved. The total cross section shows an unexpected behaviour around 1 MeV excess energy.
The values are calculated using M(p)=M(pbar) = 938.27231 Mev and M(lambda)=M(lambdabar) = 1115.63 MeV.
D(SIG)/D(OMEGA) as a function of COS(THETA(RF=CM)) for the nine intervals of the excess energy. Excess energy is SQRT(S)-M(lambda)-M(lambdabar).