Relative particle yield fluctuations in Pb-Pb collisions at ${\mathbf{\sqrt{s_{\rm NN}}=2.76}}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Eur.Phys.J.C 79 (2019) 236, 2019.
Inspire Record 1644609 DOI 10.17182/hepdata.84281

First results on K/$\pi$, p/$\pi$ and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. The observable $\nu_{\rm dyn}$, which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/$\pi$ show a change of sign in $\nu_{\rm dyn}$ from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and $\nu_{\rm dyn}$ exhibits a change in sign for p/$\pi$ and K/p.

6 data tables

Beam-energy dependence of nu_dyn.

Beam-energy dependence of nu_dyn.

Beam-energy dependence of nu_dyn.

More…

First measurement of $\Xi_{\rm c}^0$ production in pp collisions at $\mathbf{\sqrt{s}}$ = 7 TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 781 (2018) 8-19, 2018.
Inspire Record 1642729 DOI 10.17182/hepdata.83354

The production of the charm-strange baryon $\Xi_{\rm c}^0$ is measured for the first time at the LHC via its semileptonic decay into e$^+\Xi^-\nu_{\rm e}$ in pp collisions at $\sqrt{s}=7$ TeV with the ALICE detector. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval 1 $<$ $p_{\rm T}$ $<$ 8 GeV/$c$ at mid-rapidity, $|y|$ $<$ 0.5. The transverse momentum dependence of the $\Xi_{\rm c}^0$ baryon production relative to the D$^0$ meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.

2 data tables

Inclusive $\Xi_{\rm c}^{0}$ $p_{\rm T}$ differential cross section multiplied by the branching ratio into the semileptonic decay for $|y|<0.5$.

Ratio of the $p_{\rm T}$ differential cross sections of $\Xi_{\rm c}^{0}$ baryons (multiplied by the branching ratio into the semileptonic decay) and D$^{0}$ mesons for $|y|<0.5$.


Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\mathbf{\sqrt{{\textit s}}}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 97 (2018) 024615, 2018.
Inspire Record 1625294 DOI 10.17182/hepdata.81951

Invariant differential yields of deuterons and anti-deuterons in pp collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV and the yields of tritons, $^{3}$He nuclei and their anti-nuclei at $\sqrt{s}$ = 7 TeV have been measured with the ALICE detector at the LHC. The measurements cover a wide transverse momentum ($p_{\text{T}}$) range in the rapidity interval $|y|<0.5$, extending both the energy and the $p_{\text{T}}$ reach of previous measurements up to 3 GeV/$c$ for $A=2$ and 6 GeV/$c$ for $A=3$. The coalescence parameters of (anti-)deuterons and $^{3}\overline{\text{He}}$ nuclei exhibit an increasing trend with $p_{\text{T}}$ and are found to be compatible with measurements in pA collisions at low $p_{\text{T}}$ and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti-)nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.

11 data tables

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 0.9 TeV. The uncertainties of $_{-0.8}^{+2.2}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 2.76 TeV. The uncertainties of $_{-2.8}^{+5.2}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 7 TeV. The uncertainties of $_{-2.0}^{+5.0}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

More…

Search for collectivity with azimuthal J/$\psi$-hadron correlations in high multiplicity p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 and 8.16 TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 780 (2018) 7-20, 2018.
Inspire Record 1624550 DOI 10.17182/hepdata.79406

We present a measurement of azimuthal correlations between inclusive J/$\psi$ and charged hadrons in p-Pb collisions recorded with the ALICE detector at the CERN LHC. The J/$\psi$ are reconstructed at forward (p-going, 2.03 $<$ y $<$ 3.53) and backward (Pb-going, $-$4.46 $<$ y $<$ $-$2.96) rapidity via their $\mu^+\mu^-$ decay channel, while the charged hadrons are reconstructed at mid-rapidity ($|\eta|$ $<$ 1.8). The correlations are expressed in terms of associated charged-hadron yields per J/$\psi$ trigger. A rapidity gap of at least 1.5 units is required between the trigger J/$\psi$ and the associated charged hadrons. Possible correlations due to collective effects are assessed by subtracting the associated per-trigger yields in the low-multiplicity collisions from those in the high-multiplicity collisions. After the subtraction, we observe a strong indication of remaining symmetric structures at $\Delta\varphi$ $\approx$ 0 and $\Delta\varphi$ $\approx$ $\pi$, similar to those previously found in two-particle correlations at middle and forward rapidity. The corresponding second-order Fourier coefficient ($v_2$) in the transverse momentum interval between 3 and 6 GeV/$c$ is found to be positive with a significance of about 5$\sigma$. The obtained results are similar to the J/$\psi$ $v_2$ coefficients measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, suggesting a common mechanism at the origin of the J/$\psi$ $v_2$.

4 data tables

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in proton-going direction at $\sqrt{s_{NN}}$ = 5.02 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in Pb-going direction at $\sqrt{s_{NN}}$ = 5.02 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in proton-going direction at $\sqrt{s_{NN}}$ = 8.16 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

More…

J/$\psi$ elliptic flow in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Rev.Lett. 119 (2017) 242301, 2017.
Inspire Record 1623907 DOI 10.17182/hepdata.80235

We report a precise measurement of the J/$\psi$ elliptic flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The J/$\psi$ mesons are reconstructed at mid-rapidity ($|y| < 0.9$) in the dielectron decay channel and at forward rapidity ($2.5<y<4.0$) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow $v_2$ of the J/$\psi$ is studied as a function of transverse momentum and centrality. A positive $v_2$ is observed in the transverse momentum range $2 < p_{\rm T} < 8$ GeV/$c$ in the three centrality classes studied and confirms with higher statistics our earlier results at $\sqrt{s_{\rm NN}} = 2.76$ TeV in semi-central collisions. At mid-rapidity, the J/$\psi$ $v_2$ is investigated as a function of transverse momentum in semi-central collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low $p_{\rm T}$ the elliptic flow of the J/$\psi$ originates from the thermalization of charm quarks in the deconfined medium, but suggests that additional mechanisms might be missing in the models.

4 data tables

Transverse momentum dependence of inclusive J/$\psi$ $v_2$ at $\sqrt{s_{\rm NN}}=5.02$ TeV for the 20-40% centrality class (forward rapidity). The first uncertainty (stat) is statistical, the second (sys,uncorrel) is the uncorrelated systematic, while the third one (sys,correl) is a $p_{\rm T}$-correlated systematic uncertainty.

Transverse momentum dependence of inclusive J/$\psi$ $v_2$ at $\sqrt{s_{\rm NN}}=5.02$ TeV for the 20-40% centrality class (mid-rapidity). The first uncertainty (stat) is statistical, the second (sys,uncorrel) is the uncorrelated systematic, while the third one (sys,correl) is a $p_{\rm T}$-correlated systematic uncertainty.

Transverse momentum dependence of inclusive J/$\psi$ $v_2$ at $\sqrt{s_{\rm NN}}=5.02$ TeV for the 5-20% centrality class (forward rapidity). The first uncertainty (stat) is statistical, the second (sys,uncorrel) is the uncorrelated systematic, while the third one (sys,correl) is a $p_{\rm T}$-correlated systematic uncertainty.

More…

Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 777 (2018) 151-162, 2018.
Inspire Record 1623558 DOI 10.17182/hepdata.79482

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow $v_2$ reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =2.76$ TeV. The two-particle correlator $\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle$, calculated for different combinations of charges $\alpha$ and $\beta$, is almost independent of $v_2$ (for a given centrality), while the three-particle correlator $\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle$ scales almost linearly both with the event $v_2$ and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on $v_2$ points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.

73 data tables

$v_2\{EP\}$ with $|\Delta\eta| > 2.0$ as a function of centrality for unbiased events in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

$v_2\{EP\}$ with $|\Delta\eta| > 2.0$ as a function of centrality for shape selected events (0-10% $q_2$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

$v_2\{EP\}$ with $|\Delta\eta| > 2.0$ as a function of centrality for shape selected events (10-20% $q_2$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

More…

The ALICE Transition Radiation Detector: construction, operation, and performance

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Nucl.Instrum.Meth.A 881 (2018) 88-127, 2018.
Inspire Record 1622554 DOI 10.17182/hepdata.79498

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

5 data tables

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx). Statistical uncertainties as vertical error bars.

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx + TR). Statistical uncertainties as vertical error bars.

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ and proton in pp collisions ($\sqrt{s} = 7$ TeV). Statistical uncertainties as vertical error bars. Uncertainties in momentum and thus $\beta \gamma$ determination are drawn as horizontal error bars.

More…

Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 96 (2017) 064613, 2017.
Inspire Record 1621809 DOI 10.17182/hepdata.79128

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured 3D kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass ($m_{\mathrm{T}}$) scaling of source radii obtained from pion and kaon correlations. This $m_{\mathrm{T}}$ scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A $k_{\mathrm{T}}$ scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.

23 data tables

Out projection of raw 3D LCMS K+- K+- correlation function for 0.2 < kT < 0.4 GeV/c bin.

Side projection of raw 3D LCMS K+- K+- correlation function for 0.2 < kT < 0.4 GeV/c bin

Long projection of raw 3D LCMS K+- K+- correlation function for 0.2 < kT < 0.4 GeV/c bin

More…

Version 2
Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 97 (2018) 024906, 2018.
Inspire Record 1621591 DOI 10.17182/hepdata.78924

The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The results are reported in terms of multiparticle correlation observables dubbed Symmetric Cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular $v_4$ and pentagonal $v_5$ flow) and the lower order harmonics (the elliptic $v_2$ and triangular $v_3$ flow) is presented. The transverse momentum dependence of correlations between $v_3$ and $v_2$ and between $v_4$ and $v_2$ is also reported. The results are compared to calculations from viscous hydrodynamics and A Multi-Phase Transport ({AMPT}) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density ($\eta/s$). A small average value of $\eta/s$ is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations between the magnitudes of $v_2$, $v_3$ and $v_4$ show moderate $p_{\rm T}$ dependence in mid-central collisions. Together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

98 data tables

Centrality dependence of observables SC(5,2) in Pb-Pb collisions at 2.76 TeV.

Centrality dependence of observables SC(5,2) in Pb-Pb collisions at 2.76 TeV.

Centrality dependence of observables SC(5,3) in Pb-Pb collisions at 2.76 TeV.

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…