DATA ON THE TOTAL HADRONIC CROSS SECTION AND R WERE REPORTED BY R. F. SCHWITTERS, STANFORD CONF (1975).
No description provided.
No description provided.
We have measured the polarization parameter in π−p elastic scattering at laboratory momenta of 1180, 1250, and 1360 MeV/c in the angular interval 65°<θc.m.<115°. The results were used to show that the polarized target used in these (and other similar) experiments was uniformly polarized. These measurements were also used to resolve pre-existing experimental discrepancies in the determination of the polarization parameter, and to clarify the behavior of scattering amplitudes in this energy range. We show that local measurements of this type are important in resolving discrete ambiguities affecting the energy continuation of the amplitudes. An important by-product of this experiment is the development of a fast method of reconstructing particle trajectories and fitting the elastic events, which could have a significant impact for future high-statistics experiments.
No description provided.
We present the results of a bubble chamber study of the pure-isospinI = 0 reaction K−p → ωΛ at 7 incident momenta between 1.934 and 2.516 GeV/c. An energy-dependent partial-wave analysis in the c.m. energy range (2070 ÷ 2436) MeV including these new data confirms the coupling of theG7 Λ(2100) to this channel and yields evidence for the existence of a new resonant stateD3or P3 Λ(2325). A semi-energy-independent partial-wave analysis is also carried out, by means of all available data from the threshold of the K−p → ωΛ reaction up to 2436 MeV. This supplies clear and unambiguous evidence for the contribution of the knownP3 Λ(1860) and of the above-proposedD3 Λ(2325) to the ωΛ channel.
No description provided.
No description provided.
No description provided.
We have investigated the inclusive production of γ, KS0, Λ0, and Λ¯0 in 100-GeV/c p¯p interactions in the 30-in. hydrogen bubble chamber at Fermilab. We present various inclusive distributions and compare them with corresponding distributions in 100-GeV/c pp interactions and lower-energy p¯p interactions. We find some evidence for Σ(1385) production but none for K*(890) production. We find evidence for a nonzero Λ0 polarization of -0.45 ± 0.21.
No description provided.
No description provided.
No description provided.
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.
Neutron diffraction dissociation has been measured at the ISR in proton-neutron interactions at 37 GeV c.m. energy. The data were taken with the Split Field Magnet detector, during a short deuteron storage test run with colliding p-d beams. Differential mass and momentum transfer distributions are reported; the value of the total cross-section shows a weak s -dependence when compared to lower energy data.
ERROR IS MOSTLY SYSTEMATIC.
No description provided.
The differential cross sections for elastic π − p, K − p , p p and π + p, pp scattering at 39 and 44.5 GeV/ c , respectively, have been measured in the interval of momentum transfer squared 0.15 ≤ ovbt | ≤ 2 (GeV/ c ) 2 .
No description provided.
No description provided.
No description provided.
The reaction π − + p → π − + π − + π + + p at 25 GeV/ c was studied in the mass region M 3 π ⩾ 1.8 GeV with leading π + . The mass spectrum of the π + π − system shows peaks corresponding to the ϱ 0 , f and g 0 resonances and an enhancement around 1.9 GeV. Evidence is presented for a J P = 3 + s-wave g 0 π − state (A 4 ) similar to the ϱ 0 π − (A 1 ) and fπ − (A 3 ) threshold enhancements.
No description provided.
The angular distributions for the two annihilation channels p ̄ p →π + π − and p ̄ p → K + K − have been measured at 6.2 GeV/ c . The two-pion channel shows peripheral peaks for π + and π − going forward, and the two-kaon channel shows a peripheral peak for the K − going forward. The results have been compared with the line-reversed elastic backward scattering reactions and also with a constituent interchange model.
S = 13.546 GEV**2, T+U = -11.746 GEV**2, KINEMATIC LIMITS: -T = 0.063 AND 11.683 GEV**2.
S = 13.546 GEV**2, KINEMATIC LIMITS: -T = 0.036 AND 11.262 GEV**2.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.