Energy dependence of coherent photonuclear production of J/$\psi$ mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$=5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2023) 119, 2023.
Inspire Record 2666011 DOI 10.17182/hepdata.144758

The cross section for coherent photonuclear production of J/$\psi$ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Cross sections are presented in five different J/$\psi$ rapidity ranges within $|y|<4$, with the J/$\psi$ reconstructed via its dilepton decay channels. In some events the J/$\psi$ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range $17 < W_{\gamma\, \mathrm{Pb, n}} <920$ GeV, where $W_{\gamma\, \mathrm{Pb, n}}$ is the centre-of-mass energy per nucleon of the $\gamma\,\mathrm{Pb}$ system. This range corresponds to a Bjorken-$x$ interval spanning about three orders of magnitude: $ 1.1\times10^{-5}<x<3.3\times 10^{-2}$. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.

6 data tables

Measured coherent J/psi cross section for the 0N0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

Measured coherent J/psi cross section for the 0NXN+XN0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

Measured coherent J/psi cross section for the XN0N forward class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

More…

Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 741, 2023.
Inspire Record 2637679 DOI 10.17182/hepdata.141857

The azimuthal ($\Delta\varphi$) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p$-$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Results are reported for electrons with transverse momentum $4<p_{\rm T}<16$ GeV/$c$ and pseudorapidity $|\eta|<0.6$. The associated charged particles are selected with transverse momentum $1<p_{\rm T}<7$ GeV/$c$, and relative pseudorapidity separation with the leading electron $|\Delta\eta| < 1$. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p$-$Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The $\Delta\varphi$ distribution and the peak observables in pp and p$-$Pb collisions are compared with calculations from various Monte Carlo event generators.

21 data tables

$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in pp collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.

$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.

Baseline of $\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ in pp and p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.

More…

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

19 data tables

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

More…

Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Symmetry plane correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Eur.Phys.J.C 83 (2023) 576, 2023.
Inspire Record 2628969 DOI 10.17182/hepdata.141027

A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.

9 data tables

Centrality dependence of $\langle \cos[4(\Psi_{4}-\Psi_{2})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{6}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{2}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

More…

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Production of ${\rm K}^{0}_{\rm{S}}$, $\Lambda$ ($\bar{\Lambda}$), $\Xi^{\pm}$ and $\Omega^{\pm}$ in jets and in the underlying event in pp and p$-$Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 136, 2023.
Inspire Record 2182725 DOI 10.17182/hepdata.139083

The production of strange hadrons (K$^{0}_{\rm S}$, $\Lambda$, $\Xi^{\pm}$, and $\Omega^{\pm}$), baryon-to-meson ratios ($\Lambda/{\rm K}^0_{\rm S}$, $\Xi/{\rm K}^0_{\rm S }$, and $\Omega/{\rm K}^0_{\rm S}$), and baryon-to-baryon ratios ($\Xi/\Lambda$, $\Omega/\Lambda$, and $\Omega/\Xi$) associated with jets and the underlying event were measured as a function of transverse momentum ($p_{\rm T}$) in pp collisions at $\sqrt{s} = 13$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, $\Xi^{\pm}$ and $\Omega^{\pm}$, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p-Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadron $p_{\rm T}$ (0.6$-$6 GeV/$c$). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with PYTHIA 8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadron $p_{\rm T}$ region. The maximum deviation is observed for $\Xi^{\pm}$ and $\Omega^{\pm}$, which reaches a factor of about six. In p-Pb collisions, there is no significant event-multiplicity dependence for particle production in jets, in contrast to what is observed in the underlying event. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.

44 data tables

$p_{\rm T}$-differential density of inclusive ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential densities of ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in jets and the underlying event in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential density of inclusive $\Xi^{\pm}$ in pp collisions at $\sqrt{s} = 13$ TeV.

More…

Measurement of the angle between jet axes in pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 201, 2023.
Inspire Record 2182727 DOI 10.17182/hepdata.138866

This article reports measurements of the angle between differently defined jet axes in pp collisions at $\sqrt{s} = 5.02$ TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parameters $R=0.2$ and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, $\Delta R_{\mathrm{axis}}$, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The $\Delta R_{\mathrm{axis}}$ observable is presented for $20 < {p_{\mathrm{T}}^{\mathrm{ch\; jet}}}< 100$ GeV/$c$, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins$-$Soper$-$Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell$-$Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure.

106 data tables

$\Delta R_{\rm axis}$ distribution for WTA$\textendash$Standard for jets of $R=0.2$, in the interval $20<p_{\rm T}^{\rm ch \ jet}<40 \ {\rm GeV}/c$.

$\Delta R_{\rm axis}$ distribution for WTA$\textendash$SD with grooming setting ($z_{\rm cut}=0.1,\beta=0$) for jets of $R=0.2$, in the interval $20<p_{\rm T}^{\rm ch \ jet}<40 \ {\rm GeV}/c$.

$\Delta R_{\rm axis}$ distribution for WTA$\textendash$SD with grooming setting ($z_{\rm cut}=0.1,\beta=1$) for jets of $R=0.2$, in the interval $20<p_{\rm T}^{\rm ch \ jet}<40 \ {\rm GeV}/c$.

More…

Jet-like correlations with respect to K$^{0}_{\rm S}$ and $\Lambda$ ($\bar{\Lambda}$) in pp and Pb-Pb collisions at $\mathbf{\it\sqrt{s_\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 497, 2023.
Inspire Record 2175449 DOI 10.17182/hepdata.140841

Two-particle correlations with ${\rm K}^{0}_{\rm{S}}$, $\Lambda$/$\bar{\Lambda}$, and charged hadrons as trigger particles in the transverse momentum range $8 < p_\mathrm{T,trig}<16$ GeV/$c$, and associated charged particles within $1 < p_\mathrm{T,assoc}<8$ GeV/$c$, are studied at mid-rapidity in pp and central Pb-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE detector at the LHC. After subtracting the contributions of the flow background, the per-trigger yields are extracted on both the near and away sides, and the ratio in Pb-Pb collisions with respect to pp collisions ($I_{\mathrm {AA}}$) is computed. The per-trigger yield in Pb-Pb collisions on the away side is strongly suppressed to the level of $I_{\mathrm {AA}} \approx 0.6$ for $p_\mathrm{T,assoc}>3$ GeV/$c$ as expected from strong in-medium energy loss, while an enhancement develops at low $p_\mathrm{T,assoc}$ on both the near and away sides, reaching $I_{\mathrm {AA}} \approx 1.8$ and $2.7$ respectively. These findings are in good agreement with previous ALICE measurements from two-particle correlations triggered by neutral pions ($\pi^{0}$-h) and charged hadrons (h-h) in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. Moreover, the correlations with ${\rm K}^{0}_{\rm{S}}$ mesons and $\Lambda$/$\bar{\Lambda}$ baryons as trigger particles are compared to those of inclusive charged hadrons. The results are compared with the predictions of Monte Carlo models.

7 data tables

Distributions of $C(\Delta\varphi)$ for h$-$h, K$^{0}_\mathrm{S}$-h,and ($\Lambda+\overline{\Lambda})-$h as trigger particles with $8 < p_\mathrm{T,trig}<16 \mathrm{GeV}/c$ and associated particles with $4 < p_\mathrm{T,assoc}<6$ GeV/$c$ in $0-10\%$ central Pb$-$Pb and pp collisions. The background has been subtracted based on the estimation of ZYAM in pp collisions and the additional contributions of the anisotropic flow harmonics $v_{2}$ and $v_{3}$ in Pb$-$Pb collisions.

Near-side of per-trigger yield modification, ($I_{\mathrm{AA}}$), of h$-$h, K$^{0}_\mathrm{S}$-h,and $(\Lambda+\overline{\Lambda})-$h trigger momentum range is $8< p_{T}^{trig} < 16~\mathrm{GeV}/c$, and associated charged particle momentum ranges which are showen in the table down.

Away-side of per-trigger yield modification, ($I_{\mathrm{AA}}$), of h$-$h, K$^{0}_\mathrm{S}-$h,and $(\Lambda+\overline{\Lambda})-$h trigger momentum range is $8< p_{T}^{trig} < 16~\mathrm{GeV}/c$, and associated charged particles momentum ranges which are showen in the table down.

More…

Version 2
Search for heavy resonances decaying into a $Z$ or $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $139~$fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 016, 2023.
Inspire Record 2104697 DOI 10.17182/hepdata.111122

This article presents a search for new resonances decaying into a $Z$ or $W$ boson and a 125 GeV Higgs boson $h$, and it targets the $\nu\bar{\nu}b\bar{b}$, $\ell^+\ell^-b\bar{b}$, or $\ell^{\pm}{\nu}b\bar{b}$ final states, where $\ell=e$ or $\mu$, in proton-proton collisions at $\sqrt{s}=13$ TeV. The data used correspond to a total integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of $Zh$ or $Wh$ candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.

132 data tables

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> vvbb/cc signals in the 0-lepton channel.

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> vvbb/cc signals in the 0-lepton channel.

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> llbb/cc signals in the 2-lepton channel.

More…