Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Hadronization in semi-inclusive deep-inelastic scattering on nuclei

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Nucl.Phys.B 780 (2007) 1-27, 2007.
Inspire Record 749249 DOI 10.17182/hepdata.13387

A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R_A^h, are presented for various hadrons (\pi^+, \pi^-, \pi^0, K^+, K^-, p, and \bar{p}) as a function of the virtual-photon energy \nu, the fraction z of this energy transferred to the hadron, the photon virtuality Q^2, and the hadron transverse momentum squared p_t^2. The data reveal a systematic decrease of R_A^h with the mass number A for each hadron type h. Furthermore, R_A^h increases (decreases) with increasing values of \nu (z), increases slightly with increasing Q^2, and is almost independent of p_t^2, except at large values of p_t^2. For pions two-dimensional distributions also are presented. These indicate that the dependences of R_A^{\pi} on \nu and z can largely be described as a dependence on a single variable L_c, which is a combination of \nu and z. The dependence on L_c suggests in which kinematic conditions partonic and hadronic mechanisms may be dominant. The behaviour of R_A^{\pi} at large p_t^2 constitutes tentative evidence for a partonic energy-loss mechanism. The A-dependence of R_A^h is investigated as a function of \nu, z, and of L_c. It approximately follows an A^{\alpha} form with \alpha \approx 0.5 - 0.6.

228 data tables

PI+ multiplicty ratio (Helium/Deuterium) as a function of NU.

K+ multiplicty ratio (Helium/Deuterium) as a function of NU.

P multiplicty ratio (Helium/Deuterium) as a function of NU.

More…

K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 72 (2005) 052001, 2005.
Inspire Record 681320 DOI 10.17182/hepdata.42774

We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.

36 data tables

K0S inclusive invariant PT distribution for HARD events at a centre of massenergy 1800 GeV.

K0S inclusive invariant PT distribution for MB events at a centre of mass energy 1800 GeV.

K0S inclusive invariant PT distribution for SOFT events at a centre of massenergy 1800 GeV.

More…

Charged track multiplicity in B meson decay

The CLEO collaboration Brandenburg, G. ; Ershov, A. ; Gao, Y.S. ; et al.
Phys.Rev.D 61 (2000) 072002, 2000.
Inspire Record 504672 DOI 10.17182/hepdata.47189

We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the $\Upsilon(4S)$ resonance. Using a sample of 1.5 x 10^6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71 +- 0.02 +0.21/-0.15 for the decay of the pair. This corresponds to a mean multiplicity of 5.36 +- 0.01 +0.11/-0.08 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82 +- 0.05 +0.21/-0.19 charged particles per $B\bar{B}$ decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62 +- 0.04 +0.24/-0.18 per $B\bar{B}$ pair.

1 data table

Charged track multiplicity (i.e. charged hadron and charged lepton) in B meson decay.


Study of gluon versus quark fragmentation in Upsilon --> g g gamma and e+ e- --> q anti-q gamma events at s**(1/2) = 10-GeV.

The CLEO collaboration Alam, M.S. ; Athar, S.B. ; Ling, Z. ; et al.
Phys.Rev.D 56 (1997) 17-22, 1997.
Inspire Record 439530 DOI 10.17182/hepdata.47233

Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.

1 data table

No description provided.


Total cross-section of two photon production of hadrons

Baru, S.E. ; Beilin, M.V. ; Blinov, A.E. ; et al.
Z.Phys.C 53 (1992) 219-224, 1992.
Inspire Record 33675 DOI 10.17182/hepdata.14767

The total cross section for γγ→hadrons was measured as a function of the invariant massW of the system (1.25 to 4.25 GeV) at thee+e−-collider VEPP-4 with the detector MD-1. For the first time the data were obtained by detecting both scattered leptons with almost zero emission angles. The mean squared four momentum transfer 〈q2〉 is −0.005 GeV2, the rmsW resolution is 100–250 MeV. The data on the mean charged multiplicity 〈nC〉 are well described by the function 〈nC〉=(1.62 ±0.37)+(1.83±0.45)·ln(W(GeV)). TheW dependence of the total cross section is consistent with the theoretical prediction σ(nb)=240+270/W(GeV).

2 data tables

No description provided.

No description provided.


A Measurement of D* Production in Jets from anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 348, 1990.
Inspire Record 283351 DOI 10.17182/hepdata.19973

The production rate of charged D* mesons in jets has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron with the Collider Detector at Fermilab. In a sample of approximately 32 300 jets with a mean transverse energy of 47 GeV obtained from an exposure of 21.1 nb−1, a signal corresponding to 25.0±7.5(stat)±2.0(syst) D*±→K∓π±π± events is seen above background. This corresponds to a ratio N(D*++D*−)/N(jet) =0.10±0.03±0.03 for D* mesons with fractional momentum z greater than 0.1.

1 data table

Mean jet transverse energy is 47 GeV. Branching rates for D* --> D0 PI of 0.57 +- 0.04 (DSYS=0.04) and D0 --> K- PI+ of 0.042 +- 0.004 (DSYS=0.004), from MARK-III have been used.


Inclusive Hadron Production in Upsilon Decays and in Nonresonant electron-Positron Annihilation at 10.49-GeV

The CLEO collaboration Behrends, S. ; Chadwick, K. ; Gentile, T. ; et al.
Phys.Rev.D 31 (1985) 2161, 1985.
Inspire Record 205668 DOI 10.17182/hepdata.23589

We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.

36 data tables

No description provided.

No description provided.

VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.

More…

PHOTON MULTIPLICITY AND ENERGY FRACTION OF THE UPSILON (4S) AND NEAR CONTINUUM

Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
PRINT-83-0720, 1983.
Inspire Record 191581 DOI 10.17182/hepdata.12129

None

2 data tables

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM R.A. PERCHANOK, PHD THESIS, CORNELL UNIVERSITY (1983).

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM G.J. RUCINSKI, PHD THESIS, CORNELL UNIVERSITY (1983).


Charged Particle Multiplicities in $B$ Meson Decay

The CLEO collaboration Alam, M.S. ; Csorna, S.E. ; Fridman, A. ; et al.
Phys.Rev.Lett. 49 (1982) 357, 1982.
Inspire Record 178492 DOI 10.17182/hepdata.20573

The charged multiplicity has been measured at the ϒ(4S) and a value of 5.75±0.1±0.2 has been obtained for the mean charged multiplicity in B-meson decay. Combining this result with the measurement of prompt leptons from B decay, the values 4.1±0.35±0.2 and 6.3±0.2±0.2 are found for the semileptonic and nonleptonic charged multiplicities, respectively. If b→c dominance is assumed for the weak decay of the B meson, then the semileptonic multiplicity is consistent with the recoil mass determined from the lepton momentum spectrum.

2 data tables

No description provided.

No description provided.