Measurement of the helicity dependence for single $\pi^{0}$ photoproduction from the deuteron

The A2 collaboration Cividini, F. ; Dieterle, M. ; Abt, S. ; et al.
Eur.Phys.J.A 58 (2022) 113, 2022.
Inspire Record 2040546 DOI 10.17182/hepdata.132014

The helicity-dependent single $\pi^{0}$ photoproduction cross section on the deuteron and the angular dependence of the double polarisation observable $E$ for the quasi-free single $\pi^0$ production off the proton and the neutron have been measured for the first time from the threshold region up to the photon energy 1.4 GeV. The experiment was performed at the tagged photon facility of the MAMI accelerator and used a circularly polarised photon beam and longitudinally polarised deuteron target. The reaction products were detected using the large acceptance Crystal Ball/TAPS calorimeter, which covered 97% of the full solid angle. Comparing the cross section from the deuteron with the sum of free nucleon cross sections provides a quantitative estimate of the effects of the nuclear medium on pion production. In contrast, comparison of $E$ helicity asymmetry data from quasi-free protons off deuterium with data from a free proton target indicates that nuclear effects do not significantly affect this observable. As a consequence, it is deduced that the helicity asymmetry $E$ on a free neutron can be reliably extracted from measurements on a deuteron in quasi-free kinematics.

158 data tables

Inclusive polarized total cross section as a function of photon beam energy.

Helicity-dependent differential cross section on deuteron at Egamma= 161. MeV

Helicity-dependent differential cross section on deuteron at Egamma= 178. MeV

More…

Single $\pi^0$ Production Off Neutrons Bound in Deuteron with Linearly Polarized Photons

The A2 at MAMI collaboration Mullen, C. ; Gardner, S. ; Glazier, D.I. ; et al.
Eur.Phys.J.A 57 (2021) 205, 2021.
Inspire Record 1851649 DOI 10.17182/hepdata.127968

The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.

12 data tables

Photon beam asymmetry Sigma at W= 1.2711 GeV

Photon beam asymmetry Sigma at W= 1.2858 GeV

Photon beam asymmetry Sigma at W= 1.3003 GeV

More…

Cross Section for $\gamma n \to \pi^0 n$ measured at Mainz/A2

The A2 collaboration Briscoe, W.J. ; Hadžimehmedović, M. ; Kudryavtsev, A.E. ; et al.
Phys.Rev.C 100 (2019) 065205, 2019.
Inspire Record 1748263 DOI 10.17182/hepdata.116236

The $\gamma n \to \pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nuclear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $\gamma n \to \pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* \to \gamma n$ at the resonance poles are determined for the first time.

21 data tables

Excitation function at pion c.m. angle THETA=18 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=32 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=41 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

More…

Experimental study of the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions at the Mainz Microtron

The A2 collaboration Akondi, C.S. ; Bantawa, K. ; Manley, D.M. ; et al.
Eur.Phys.J.A 55 (2019) 202, 2019.
Inspire Record 1703675 DOI 10.17182/hepdata.130236

This work measured $d\sigma/d\Omega$ for neutral kaon photoproduction reactions from threshold up to a c.m.\ energy of 1855MeV, focussing specifically on the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions. Our results for $\gamma n\rightarrow K^0 \Sigma^0$ are the first-ever measurements for that reaction. These data will provide insight into the properties of $N^*$ resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $\pi N$ channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.

28 data tables

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

More…

Photoproduction of {\boldmath{$\pi^{0}$}} Mesons off Protons and Neutrons in the Second and Third Nucleon Resonance Region

The A2 collaboration Dieterle, M. ; Werthmüller, D. ; Abt, S. ; et al.
Phys.Rev.C (2018) 065205-1-065205-28, 2018.
Inspire Record 1675023 DOI 10.17182/hepdata.131794

Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the electromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Single $\pi^0$ photoproduction off quasi-free nucleons from the deuteron was experimentally studied. Nuclear effects were investigated by a comparison of the results for free protons and quasi-free protons and used as a correction for the quasi-free neutron data. The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator for photon energies between 0.45~GeV and 1.4~GeV, using an almost $4\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Reaction model predictions and PWA for $\gamma n\rightarrow n\pi^{0}$, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. The results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.

19 data tables

Excitation function at cos(Theta_pi0)cm = -0.95

Excitation function at cos(Theta_pi0)cm = -0.85

Excitation function at cos(Theta_pi0)cm = -0.75

More…

Helicity-dependent cross sections and double-polarization observable E in eta photoproduction from quasi-free protons and neutrons

The A2 collaboration Witthauer, L. ; Dieterle, M. ; Abt, S. ; et al.
Phys.Rev.C 95 (2017) 055201, 2017.
Inspire Record 1589331 DOI 10.17182/hepdata.132013

Precise helicity-dependent cross sections and the double-polarization observable $E$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons bound in the deuteron. The $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0\rightarrow 6\gamma$ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98\% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of $\eta$ photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin ($\sigma_{1/2}$). It is absent for reactions with parallel spin orientation ($\sigma_{3/2}$) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of $P_{11}$ and $S_{11}$ partial waves to explain the narrow structure.

81 data tables

Diff. cross section for helicity-1/2 at W= 1.505 GeV

Diff. cross section for helicity-1/2 at W= 1.515 GeV

Diff. cross section for helicity-1/2 at W= 1.525 GeV

More…

Photon asymmetry measurements of $\overrightarrow{\gamma} \mathrm{p} \rightarrow \pi^{0} \mathrm{p}$ for E$_{\gamma}$=320$-$650 MeV

The MAINZ-A2 collaboration Gardner, S. ; Howdle, D. ; Sikora, M.H. ; et al.
Eur.Phys.J.A 52 (2016) 333, 2016.
Inspire Record 1472369 DOI 10.17182/hepdata.129289

High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.

78 data tables

Photon beam asymmetry Sigma at W=1.2159988 GeV

Photon beam asymmetry Sigma at W=1.2194968 GeV

Photon beam asymmetry Sigma at W=1.2225014 GeV

More…

Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

eta-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

Petren, H. ; Bargholtz, Chr. ; Bashkanov, M. ; et al.
Phys.Rev.C 82 (2010) 055206, 2010.
Inspire Record 882234 DOI 10.17182/hepdata.60320

The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

6 data tables

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta* is that between the eta momentum and that of the beam in the overall CM system. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta** is that between the pp relative momentum and that of the eta in the diproton rest frame. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at a proton beam energy of 1360 MeV (excess energy Q = 40 MeV) with respect to the square of the final pp invariant mass. Note the change in units with respect to the figure.

More…

Delta Delta Excitation in Proton-Proton Induced pi0pi0 Production

Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Phys.Lett.B 695 (2011) 115-123, 2011.
Inspire Record 860341 DOI 10.17182/hepdata.56497

Exclusive measurements of the $pp \to pp\pi^0\pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p \ge$ 1 GeV, where the $\Delta\Delta$ excitation becomes the leading process. No evidence is found for a significant ABC effect beyond that given by the conventional $t$-channel $\Delta\Delta$ excitation. This holds also for the double-pionic fusion to the quasibound $^2$He. The data are compared to model predictions, which are based on both pion and $\rho$ exchange. Total and differential cross sections are at variance with these predictions and call for a profound modification of the $\rho$-exchange. A phenomenological modification allowing only a small $\rho$ exchange contribution leads to a quantitative description of the data.

33 data tables

Cross section taken from an earlier CELSIUS publication (PL B679(2009)30 - arXiv:0903.2087).

PI0_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.

PI0_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.

More…