A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.
No description provided.
No description provided.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
No description provided.
For the first time, the reactions π + p →K + ∑ + and K − p→ π − ∑ + have been studied in the same apparatus. This has been done at an adequately high momentum (10.1 GeV/ c ) to allow a check of the prediction of exchange degeneracy, that the differential cross sections should be converging at high energy. We have measured the cross section for momentum transfers t between t min and t = −0.3 (GeV/ c ) 2 . We find that for both reactions the differential cross section shows an exponential fall, with no deviations right in to t = t min (where some other experiments have shown a dip in the cross section). Furthermore, we find the magnitude of the differential cross sections to be closely similar at t = 0, with a ratio R= ( d σ d t) t=0 ( K − p →π − ∑ + ) ( d σ d t) t=0 (π + p → K + ∑ + However, the slope for the positive reaction is about 19% steeper than that for the negative reaction.
No description provided.
In an experiment performed at the CERN Intersecting Storage Rings (ISR), 11 e + e − pairs of high invariant mass value (> 2.5 GeV/c 2 ) have been observed. Of these events, 9 can be interpreted as arising from the reaction p + p → J (3.1) + anything. the cross-section for this reaction is estimated and compared with the result obtained at lower centre-of-mass energies.
No description provided.
In 205 GeV / c π − p inelastic interactions, negative particles with transverse momentum greater than 1.0 GeV / c moving forward in the center of mass outnumber similar positive particles by a factor of 3.7 to 1, greatly in excess of the corresponding ratio for small transverse momentum. The asymmetry is reversed in the backward direction. The forward asymmetry is most prominent in 2-, 4-, and 6-prong interactions, but both forward and backward asymmetries are also substantial for higher multiplicity interactions.
No description provided.
No description provided.
No description provided.
The differential cross section of π+p elastic scattering has been measured in two high-statistics bubble-chamber exposures at laboratory beam momenta of 3.7 and 7.1 GeV/c. A new feature suggested by these data is a dip in dσdu at −u≃3 GeV2. This dip corresponds well to the third zero of J0(b−u′), where ℏcb=1 fm. The effective u-channel Regge trajectory computed for these two energies has a slope of 0.22 ± 0.26.
No description provided.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
No description provided.
The analysis of 1466 events of the type e + e − → μ ± μ ± , in the time-lifke range from 1.44 to 9.00 GeV 2 , sh that the absolute value of the cross-section and its energy dependence follow QED expectations within (± 3.2%) and (± 1.2%), respectively.
The cross section of the reaction $e^+ e^- \to \mu^\pm \mu^\mp$ integrated over the experimental apparatus at 14 values of the colliding beam energy $E$ corresponding to total centre-of-mass energy $\sqrt{s}=2E$ from 1.2 to 3.0 GeV.
A partial wave analysis of the reaction π + n → π + π − π 0 p yields an A 0 2 production cross section of 225 ± 30μb for momentum transfer squared < 1 (GeV/ c ) 2 ; the differential cross-section and density matrix are presented and compared with ω 0 production in the light of theoretical models.
Axis error includes +- 10/10 contribution.
ASSUMING NO POPULATION OF HELICITY 2 DENSITY MATRIX ELEMENTS IN T-CHANNEL FRAME. THIS MM = 1+, 1-, 2+, 2- NOTATION REFERS TO THAT SUM OR DIFFERENCE OF HELICITY M DENSITY MATRIX ELEMENTS CORRESPONDING ASYMPTOTICALLY TO NATURAL (+) OR UNNATURAL (-) PARITY EXCHANGE.
Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.