Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

19 data tables

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

More…

Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at $\sqrt{s} = 5.02$ and $13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 072008, 2023.
Inspire Record 2601279 DOI 10.17182/hepdata.144248

The pseudorapidity density of charged particles with minimum transverse momentum ($p_{\rm T}$) thresholds of 0.15, 0.5, 1, and 2 GeV$/c$ is measured in pp collisions at the centre of mass energies of $\sqrt{s} =$ 5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity ($\eta$) within $\pm0.8$ and $p_{\rm T}$ larger than the corresponding threshold. In addition, measurements without $p_{\rm T}$-thresholds are performed for inelastic and non-single-diffractive events as well as for inelastic events with at least one charged particle having $|\eta|<1$ in pp collisions at $\sqrt{s} =$ 5.02 TeV for the first time at the LHC. These measurements are compared to the PYTHIA 6, PYTHIA 8, and EPOS-LHC models. In general, the models describe the $\eta$ dependence of particle production well. However, discrepancies are observed for the highest transverse momentum threshold ($p_{\rm T}>2 {\rm\ GeV}/c$), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at $\sqrt{s} = 13$ TeV.

12 data tables

The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL event classes in pp collisions at $\sqrt{s} = 5.02$ TeV

The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for NSD event classes in pp collisions at $\sqrt{s} = 5.02$ TeV

The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL>0 event classes in pp collisions at $\sqrt{s} = 5.02$ TeV

More…

Two-particle transverse momentum correlations in pp and p-Pb collisions at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 107 (2023) 054617, 2023.
Inspire Record 2182733 DOI 10.17182/hepdata.137819

Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s_{\rm NN}} = 5.02$ TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.

24 data tables

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 0$-$5% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 30$-$40% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 70$-$80% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

More…

Constraining the ${\rm\overline{K}N}$ coupled channel dynamics using femtoscopic correlations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 340, 2023.
Inspire Record 2088954 DOI 10.17182/hepdata.132766

The interaction of $\rm{K}^{-}$ with protons is characterised by the presence of several coupled channels, systems like ${\rm \overline{K}^0}$n and $\pi\Sigma$ with a similar mass and the same quantum numbers as the $\rm{K}^{-}$p state. The strengths of these couplings to the $\rm{K}^{-}$p system are of crucial importance for the understanding of the nature of the $\Lambda(1405)$ resonance and of the attractive $\rm{K}^{-}$p strong interaction. In this article, we present measurements of the $\rm{K}^{-}$p correlation functions in relative momentum space obtained in pp collisions at $\sqrt{s}~=~13$ TeV, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV, and (semi)peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV. The emitting source size, composed of a core radius anchored to the $\rm{K}^{+}$p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the ${\rm \overline{K}^0}$n and $\pi\Sigma$ inelastic channels on the measured $\rm{K}^{-}$p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $\omega$, necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $\rm{K}^{-}$p interaction indicates that, while the $\pi\Sigma-\rm{K}^{-}$p dynamics is well reproduced by the model, the coupling to the ${\rm \overline{K}^0}$n channel in the model is currently underestimated.

17 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in pp collisions at $\sqrt{s}=13$ TeV.

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm {NN}}}=5.02 $ TeV (0-20%).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV (20-40%).

More…

Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 024, 2023.
Inspire Record 2071861 DOI 10.17182/hepdata.134246

The first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.

10 data tables

Differential $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

Differential $e^+e^-$ yield in 70--90\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Differential excess $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

More…

Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at $\sqrt{s}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 244, 2023.
Inspire Record 2070421 DOI 10.17182/hepdata.133033

This article presents measurements of the groomed jet radius and momentum splitting fraction in pp collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector at the Large Hadron Collider. Inclusive charged-particle jets are reconstructed at midrapidity using the anti-$k_{\rm{T}}$ algorithm for transverse momentum $60< p_{\mathrm{T}}^{\rm{ch\; jet}}<80$ GeV/$c$. We report results using two different grooming algorithms: soft drop and, for the first time, dynamical grooming. For each grooming algorithm, a variety of grooming settings are used in order to explore the impact of collinear radiation on these jet substructure observables. These results are compared to perturbative calculations that include resummation of large logarithms at all orders in the strong coupling constant. We find good agreement of the theoretical predictions with the data for all grooming settings considered.

12 data tables

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=0$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=1$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=2$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

More…

First measurement of antideuteron number fluctuations at energies available at the Large Hadron Collider

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Phys.Rev.Lett. 131 (2023) 041901, 2023.
Inspire Record 2070391 DOI 10.17182/hepdata.136310

The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.

5 data tables

Second order to first order cumulant ratio of the $\overline{d}$ multiplicity distribution as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Pearson correlation between the measured $\overline{p}$ and $\overline{d}$ as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Dependence of $\overline{p}$-$\overline{d}$ correlation on pseudorapidity acceptance of $\overline{p}$ and $\overline{d}$ selection in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. Results are for 0.0--10.0$\%$ collision centrality.

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Measurement of inclusive and leading subjet fragmentation in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 245, 2023.
Inspire Record 2070434 DOI 10.17182/hepdata.133562

This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the LHC. We report distributions of the fraction $z_r$ of transverse momentum carried by subjets of radius $r$ within jets of radius $R$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_{\rm{T}}$ algorithm with jet radius $R=0.4$, and subjets are reconstructed by reclustering the jet constituents using the anti-$k_{\rm{T}}$ algorithm with radii $r=0.1$ and $r=0.2$. In pp collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the $z_r$ distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The $z_r$ distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of $z_r$ distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for $z_r<0.95$, as predicted by several jet quenching models. As $z_r \rightarrow 1$ our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.

13 data tables

Inclusive subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Inclusive subjet $z_r$ in pp collisions for $r=0.2$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Leading subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

More…

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

1 data table

The $R(\theta)$ variable for charm/inclusive emissions in three bins of $E_{Rad}$: 5-10, 10-20 and 20-35 GeV.