Measurements are reported of p̄p total cross sections from 388 to 599 MeV/ c in small momentum steps. Statistical errors are typically ±0.4%and the normalisation uncertainty is ±0.7%. There is no evidence for the “S-meson”.
DATA TAKEN WITH 8.33 CM LH2 TARGET.
DATA TAKEN WITH 1.17 CM LH2 TARGET.
The x dependence of the longitudinal structure function F L was determined with the CHARM neutrino detector exposed to neutrino and antineutrino wide-band beams of the CERN 400 GeV SPS. The results show a clear deviation from the Callan-Gross relation. The amount and the x dependence of this deviation are in agreement with the contribution coming from a finite transverse momentum of the partons in the nucleon if both the intrinsc and perturbative QCD terms are taken into account.
VALUES OF Q**2 FOR EACH POINT IN THE TABLE ARE:- 0.76,3.0,9.3,16.6,18.9.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.
New data are presented on the charged multiplicity distribution for non single-diffractive events produced in pp̄ interactions at a CM energy s = 540 GeV . The distribution in the full pseudorapidity range is compared with data from the ISR. Using the scaling variable z = n 〈n〉 a change of shape is observed. The effect is manifested as an increase from 2% to 6% in the proportion of high multiplicity ( z > 2) events. For the central pseudorapidity range, | η | ⪅ 1.5, scaling is approximately valid up to s = 540 GeV .
THE SCALING VARIABLE Z IS N/MEAN(N). THE ERRORS ARE HIGHLY CORRELATED AND ARE BASED ON THE SQUARE ROOT OF THE NUMBER OF EVENTS IN THE BIN. IN THE CASE OF MULTIPLICITIES 2,4, AND 6, ADDITIONAL SYSTEMATIC ERRORS HAVE BEEN INCLUDED. ABOVE MULTIPLICITY 96 BINS HAVE BEEN COMBINED - THE VALUE IN THE TABLE IS THE AVERAGE OVER THE RANGE - NOT THE SUM. NOTE ALSO THAT IN FIG. 1 THE "Y-VALUE" IS MULTIPLIED BY THE MEAN MULTIPLICITY (29.1).
CHARGED MULTIPLICITY (NON-CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.5.
CHARGED MULTIPLICITY (NON CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.3.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
We report on results of η-electroproduction in the resonance region at momentum transfers ofQ2=2 GeV2 and 3 GeV2. The differential cross sections obtained in the region of the second nucleon resonance strongly support the dominance of theS11(1535) in this channel. The total transverse virtual photoproduction cross section of theS11(1535) shows a flatQ2-dependence ∼e−0.39·Q2. Comparison with the total resonant γvp cross section in the second resonance region aroundW=1.5 GeV shows that theD13(1520) production decreases much faster (∼e−1.6·Q2). The data are not compatible with the simple harmonic oscillator quark model with spin and orbit excitation of a quark only.
No description provided.
No description provided.
No description provided.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
Some experimental properties of the charged hadronic fragments are compared for νp, νn,\(\bar vp\) and\(\bar vn\) interactions: multiplicities of forward and backward going particles,xF distributions for pions, fragmentation functions and theirQ2 andW2 dependence. The results are compared with the predictions of the Lund fragmentation model.
No description provided.
The inclusive production ofKs0, Λ and\(\bar \Lambda \) particles is investigated in 70 GeV/c\(\bar pp\) interactions in an experiment performed at CERN using BEBC equipped with a TST. Differential cross-sections are studied and compared with corresponding data at surrounding energies. Differences withpp data obtained at the same energy allow an estimate of theKs0, production cross-section in annihilation processes. Evidence is also given for central\(\Lambda \bar \Lambda \) production.
No description provided.
The magnetic moment of the Ξ− hyperon has been measured to be μ(Ξ−)=−0.69±0.04±0.02 nuclear magnetons, where the uncertainties are statistical and systematic, respectively.
No description provided.