The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.
PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).
Measurements ofKs0, Λ and\(\bar \Lambda \) production in π− nucleus (C, Cu, Pb) interactions are presented. The experiment was carried out with the streamer chamber spectrometer RISK using a π− beam of ∼40 GeV/c and a trigger requiring a secondary charged particle with transverse momentum above 1.1 GeV/c. Production cross sections, relative production rates and distributions of Feynmanx and transverse momentum squared as well as correlations between theV0 and the trigger particle are presented. The results are compared and found to be in agreement withKs0, Λ and\(\bar \Lambda \) data from untriggered π−p and π−C interactions, except for the relative production rate of antilambdas which is about to times larger in high-pt collisions. Our results can be well interpreted within the dual topological unitarization model.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The production of μ − e − pairs is studied in interactions of neutrinos with nuclei of heavy freon in the SKAT bubble chamber experiment. A rate of μ − e − pairs to charged current interactions of R μ − e − =(2.5± 1.4 4.3 )×10 −4 is found at an average neutrino energy of 10 GeV. The ratio μ − e − / μ − e + comes out to be μ − e − / μ − e + = 0.12± 0.08 0.22 .
No description provided.
None
No description provided.
No description provided.
No description provided.
The production of μe-pairs is studied in interactions of neutrinos with nuclei of heavy freon in the SKAT bubble chamber experiment. A rate of μ−e+ to charged current interactions above the charm threshold of\(R^{\mu ^ -e^ +}= (4.6 \pm 1.2) \cdot 10^{ - 3} \) is found. The properties of the observed μ−e+ events can be well described by assuming them to originate from the semileptonic decay of quasielastic produced charmed baryonsΛc and inclusive charmedD-meson production. The rates for these reactions are found to be (6.7±3.5)×10−2 and (2.5±0.9)×10−2, respectively. A total charmed particle production rate of (9.2±3.6)×10−2 is calculated.
No description provided.
No description provided.
None
.
DATA FOR INTERNAL MUON BREMSSTRAHLUNG.
.
We compare the p T dependence of pion, kaon and proton production cross sections in the central rapidity region in e + e − annihilation events and in proton-proton collisions at ISR energies. We find similarities both in the p T dependence of cross sections and in the particle composition as a function of p T , in agreement with the hypothesis of a universal mechanism of particle production.
Numerical values requested from authors.
We have determined the double inclusive cross-section for opposite-side high-pT photons and away-side jets withθγ≈θjet≈90° produced inpp collisions at the CERN Intersecting Storage Rings at\(\sqrt s= 63\) GeV. Under the assumption that these events arise predominantly from the QCD gluon Compton process we have calculated the gluon structure function in the range 0.15≦x≦0.30 at an average square of the four-momentum transfer of 40 GeV2/c2. The data favour a soft gluon distribution in the proton.
No description provided.
No description provided.
The inclusive production of D ∗± mesons in single tagged photon-photon collisions is investigated using the JADE detector at PETRA. D ∗± mesons are reconstructed through their decay into D 0 +π ± where the D 0 decays via D 0 →Kππ 0 . The event rate and topology are compared to the expectations of c quark production in the quark-parton model: γγ→c c .
No description provided.