We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.
No description provided.
No description provided.
No description provided.
The polarization parameter in π±p elastic scattering has been measured at several momenta in the range 2.50-5.15 GeV/c pion laboratory momentum and covering the range in t approximately from -0.2 to -2.0(GeV/c)2. The data show positive polarization for π±p scattering, having a dip near t=−0.6 (GeV/c)2 and becoming relatively large at greater values of −t. The results for π+ and π− scattering are approximately equal in magnitude but of opposite sign. The data have been analyzed to separate the components, which are symmetric and antisymmetric with respect to pion charge, and to show both the t and s dependence of each part.
No description provided.
No description provided.
No description provided.
Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.
The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.
No description provided.
USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.
Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.
The polarization parameter in pp elastic scattering was measured at 6 GeV/ c with fine t resolution for 0.02 < − t < 0.5 GeV 2 using a polarized proton beam with Effective Mass Spectrometer at the Zero Gradient Synchrotron. The polarization rises like √− t in the interval 0.02 < − t < 0.1 GeV 2 , No statistical significant structure was found in this region of momentum transfer.
No description provided.
Results on polarization in π − p and π + p forward elastic scattering at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Data on the polarization parameter in pp elastic scattering in the | t |-range from ∼0.1 to ∼ 2.9 (GeV/ c ) 2 and at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.
Statistical errors only.
A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.
Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.