First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

The GDH & A2 collaborations Ahrens, J. ; Altieri, S. ; Annand, J.R.M. ; et al.
Phys.Rev.Lett. 87 (2001) 022003, 2001.
Inspire Record 557596 DOI 10.17182/hepdata.41703

A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4$\pi$ detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability $\gamma_0$ determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.

1 data table

Two absorption cross sections, SIG(C=3/2) and SIG(C=1/2), are determined bytwo relative spin configurations, namely parallel and antiparallel. N=RE.


Photoproduction of {\boldmath{$\pi^{0}$}} Mesons off Protons and Neutrons in the Second and Third Nucleon Resonance Region

The A2 collaboration Dieterle, M. ; Werthmüller, D. ; Abt, S. ; et al.
Phys.Rev.C (2018) 065205-1-065205-28, 2018.
Inspire Record 1675023 DOI 10.17182/hepdata.131794

Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the electromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Single $\pi^0$ photoproduction off quasi-free nucleons from the deuteron was experimentally studied. Nuclear effects were investigated by a comparison of the results for free protons and quasi-free protons and used as a correction for the quasi-free neutron data. The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator for photon energies between 0.45~GeV and 1.4~GeV, using an almost $4\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Reaction model predictions and PWA for $\gamma n\rightarrow n\pi^{0}$, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. The results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.

19 data tables

Excitation function at cos(Theta_pi0)cm = -0.95

Excitation function at cos(Theta_pi0)cm = -0.85

Excitation function at cos(Theta_pi0)cm = -0.75

More…

Experimental study of the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions at the Mainz Microtron

The A2 collaboration Akondi, C.S. ; Bantawa, K. ; Manley, D.M. ; et al.
Eur.Phys.J.A 55 (2019) 202, 2019.
Inspire Record 1703675 DOI 10.17182/hepdata.130236

This work measured $d\sigma/d\Omega$ for neutral kaon photoproduction reactions from threshold up to a c.m.\ energy of 1855MeV, focussing specifically on the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions. Our results for $\gamma n\rightarrow K^0 \Sigma^0$ are the first-ever measurements for that reaction. These data will provide insight into the properties of $N^*$ resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $\pi N$ channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.

28 data tables

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

More…

Study of $\eta$ and $\eta'$ photoproduction at MAMI

The A2 collaboration Kashevarov, V.L. ; Ott, P. ; Prakhov, S. ; et al.
Phys.Rev.Lett. 118 (2017) 212001, 2017.
Inspire Record 1509373 DOI 10.17182/hepdata.116258

The reactions $\gamma p\to \eta p$ and $\gamma p\to \eta' p$ have been measured from their thresholds up to the center-of-mass energy $W=1.96$GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections were obtained with unprecedented accuracy, providing fine energy binning and full production-angle coverage. A strong cusp is observed in the total cross section and excitation functions for $\eta$ photoproduction at the energies in vicinity of the $\eta'$ threshold, $W=1896$MeV ($E_\gamma=1447$MeV). This behavior is explained in a revised $\eta$MAID isobar model by a significant branching of the $N(1895)1/2^-$ nucleon resonance to both, $\eta p$ and $\eta' p$, confirming the existence and constraining the properties of this poorly known state.

76 data tables

Run 1. Total cross section as a function of c.m. energy W.

Run 2. Total cross section as a function of c.m. energy W.

Run 3. Total cross section as a function of c.m. energy W.

More…

Measurement of pi^0 photoproduction on the proton at MAMI C

The A2 collaboration Adlarson, P. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 92 (2015) 024617, 2015.
Inspire Record 1380445 DOI 10.17182/hepdata.126971

Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Owing to the unprecedented statistical accuracy and the full angular coverage, the results are sensitive to high partial-wave amplitudes. This is demonstrated by the decomposition of the differential cross sections in terms of Legendre polynomials and by further comparison to model predictions. A new solution of the SAID partial-wave analysis obtained after adding the new data into the fit is presented.

57 data tables

Run 1. Total cross section as a function of c.m. energy W.

Excitation function at cos(Theta_eta)= -0.967

Excitation function at cos(Theta_eta)= -0.900

More…

T and F asymmetries in $π^0$ photoproduction on the proton

The A2 & MAMI collaborations Annand, J.R.M. ; Arends, H.J. ; Beck, R. ; et al.
Phys.Rev.C 93 (2016) 055209, 2016.
Inspire Record 1466854 DOI 10.17182/hepdata.116551

The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed.

68 data tables

Target asymmetry T for c.m. energy W= 1.3062 GeV

Target asymmetry T for c.m. energy W= 1.3275 GeV

Target asymmetry T for c.m. energy W= 1.3486 GeV

More…

Cross Section for $\gamma n \to \pi^0 n$ measured at Mainz/A2

The A2 collaboration Briscoe, W.J. ; Hadžimehmedović, M. ; Kudryavtsev, A.E. ; et al.
Phys.Rev.C 100 (2019) 065205, 2019.
Inspire Record 1748263 DOI 10.17182/hepdata.116236

The $\gamma n \to \pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nuclear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $\gamma n \to \pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* \to \gamma n$ at the resonance poles are determined for the first time.

21 data tables

Excitation function at pion c.m. angle THETA=18 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=32 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=41 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

More…

Helicity-dependent cross sections and double-polarization observable E in eta photoproduction from quasi-free protons and neutrons

The A2 collaboration Witthauer, L. ; Dieterle, M. ; Abt, S. ; et al.
Phys.Rev.C 95 (2017) 055201, 2017.
Inspire Record 1589331 DOI 10.17182/hepdata.132013

Precise helicity-dependent cross sections and the double-polarization observable $E$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons bound in the deuteron. The $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0\rightarrow 6\gamma$ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98\% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of $\eta$ photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin ($\sigma_{1/2}$). It is absent for reactions with parallel spin orientation ($\sigma_{3/2}$) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of $P_{11}$ and $S_{11}$ partial waves to explain the narrow structure.

81 data tables

Diff. cross section for helicity-1/2 at W= 1.505 GeV

Diff. cross section for helicity-1/2 at W= 1.515 GeV

Diff. cross section for helicity-1/2 at W= 1.525 GeV

More…

Measurement of the helicity dependence for single $\pi^{0}$ photoproduction from the deuteron

The A2 collaboration Cividini, F. ; Dieterle, M. ; Abt, S. ; et al.
Eur.Phys.J.A 58 (2022) 113, 2022.
Inspire Record 2040546 DOI 10.17182/hepdata.132014

The helicity-dependent single $\pi^{0}$ photoproduction cross section on the deuteron and the angular dependence of the double polarisation observable $E$ for the quasi-free single $\pi^0$ production off the proton and the neutron have been measured for the first time from the threshold region up to the photon energy 1.4 GeV. The experiment was performed at the tagged photon facility of the MAMI accelerator and used a circularly polarised photon beam and longitudinally polarised deuteron target. The reaction products were detected using the large acceptance Crystal Ball/TAPS calorimeter, which covered 97% of the full solid angle. Comparing the cross section from the deuteron with the sum of free nucleon cross sections provides a quantitative estimate of the effects of the nuclear medium on pion production. In contrast, comparison of $E$ helicity asymmetry data from quasi-free protons off deuterium with data from a free proton target indicates that nuclear effects do not significantly affect this observable. As a consequence, it is deduced that the helicity asymmetry $E$ on a free neutron can be reliably extracted from measurements on a deuteron in quasi-free kinematics.

158 data tables

Inclusive polarized total cross section as a function of photon beam energy.

Helicity-dependent differential cross section on deuteron at Egamma= 161. MeV

Helicity-dependent differential cross section on deuteron at Egamma= 178. MeV

More…

Measurement of the transverse target and beam-target asymmetries in $\eta$ meson photoproduction at MAMI

The A2 at MAMI collaboration Akondi, C.S. ; Annand, J.R.M. ; Arends, H.J. ; et al.
Phys.Rev.Lett. 113 (2014) 102001, 2014.
Inspire Record 1310837 DOI 10.17182/hepdata.116552

We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the $\vec \gamma \vec p\to\eta p$ reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of $\eta$ meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.

24 data tables

Target asymmetry T for c.m. energy W= 1.4969 GeV

Target asymmetry T for c.m. energy W= 1.5156 GeV

Target asymmetry T for c.m. energy W= 1.5341 GeV

More…