New upper limits for H particle production in anti-p Xe annihilation at low-energy

Barmin, V.V. ; Barylov, V.G. ; Chernukha, S.F. ; et al.
Phys.Lett.B 370 (1996) 233-238, 1996.
Inspire Record 429472 DOI 10.17182/hepdata.28391

A study of the reactions p Xe → K + K + X , p Xe → K + H(H → Σ − p)X and p Xe → K + K + H(H → Σ − p)X was performed using the 700-litre xenon bubble chamber DIANA, exposed to the 1 GeV/ c antiproton beam of ITEP (Moscow). From a sample of 7.8 · 10 5 antiproton annihilations at low energy in xenon nuclei 4 events were observed for the reaction p Xe | → K + K + X at rest ( P p ≤ 400 MeV /c ) and 8 for the same reaction in flight ( 400 ≤ P p ≤ 900 MeV /c ). The corresponding probabilities turned out to be 3.1 · 10 −5 and 3.4 · 10 −5 , respectively. No H -event was found in the two semi-inclusive reactions p Xe → K + HX and p Xe → K + K + HX . This lead to the upper limits 6 · 10 −6 and 8 · 10 −6 (90% C.L.), respectively. The corresponding upper limit for the fully inclusive reaction p Xe → HX turned out to be 1.2 · 10 −5 (90% C.L.), which is about one order of magnitude lower than the actual value reported in the literature.

1 data table

No description provided.


Inclusive jet cross-section in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 438-443, 1996.
Inspire Record 415602 DOI 10.17182/hepdata.42298

The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.

1 data table

No description provided.


Investigation of the OZI selection rule for connected quark diagrams in hadronic processes. III: Diffractive Phi and omega production in p N collisions at 70-GeV.

The SPHINX collaboration Vavilov, D.V. ; Viktorov, V.A. ; Golovkin, S.V. ; et al.
Phys.Atom.Nucl. 59 (1996) 1186-1190, 1996.
Inspire Record 406501 DOI 10.17182/hepdata.40526

None

3 data tables

No description provided.

No description provided.

This ratio is corrected for the different phase space of the (P PHI) and (P OMEGA) system.


No description provided.

No description provided.


Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 76 (1996) 3070-3075, 1996.
Inspire Record 399854 DOI 10.17182/hepdata.50120

We present a measurement of $\sigma \cdot B(W \rightarrow e \nu)$ and $\sigma \cdot B(Z~0 \rightarrow e~+e~-)$ in proton - antiproton collisions at $\sqrt{s} =1.8$ TeV using a significantly improved understanding of the integrated luminosity. The data represent an integrated luminosity of 19.7 pb$~{-1}$ from the 1992-1993 run with the Collider Detector at Fermilab (CDF). We find $\sigma \cdot B(W \rightarrow e \nu) = 2.49 \pm 0.12$nb and $\sigma \cdot B(Z~0 \rightarrow e~+e~-) = 0.231 \pm 0.012$nb.

1 data table

First systematic error is due to detector effects, the second is due to uncertainty in the luminosity.


Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

7 data tables

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

More…

Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

1 data table

A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).


A Measurement of the ratio sigma x B (p anti-p ---> W ---> e neutrino) / sigma x B (p anti-p ---> Z0 ---> e e) in p anti-p collisions at s**(1/2) = 1800-GeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 52 (1995) 2624-2655, 1995.
Inspire Record 395439 DOI 10.17182/hepdata.42470

We present an analysis of data from p p¯ collisions at a center-of-mass energy of √s =1800 GeV. A measurement is made of the ratio R≡σB(p p¯→W→eν)/σB(p p¯→Z0→ee). The data represent 19.6 pg−1 collected by the Collider Detector at Fermilab during the 1992–1993 collider run of the Fermilab Tevatron. We find R=10.90±0.32(stat)±0.29(syst), and from this value we extract a measurement of the W→eν branching ratio Γ(W→eν)/Γ(W)=0.1094±0.0033(stat)±0.0031(syst). From this branching ratio we set a limit on the top quark mass of mt>62 GeV/c2 at the 95% confidence level. In contrast with direct searches for the top quark, this limit makes no assumptions about the allowed decay modes of the top quark. In addition, we use a calculation of the leptonic width Γ(W→eν) to obtain a value for the W total decay width: Γ(W)=2.064±0.060(stat)±0.059(syst) GeV.

1 data table

The cross section ratio contains the branching ratio of W --> E NU and Z0 --> E+ E-. RE = PBAR P --> W+ X.


Measurement of the B meson differential cross-section, d sigma / d p(T), in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 1451-1455, 1995.
Inspire Record 393552 DOI 10.17182/hepdata.42432

This paper presents the first direct measurement of the $B$ meson differential cross section, $d\sigma/dp_T$, in $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV using a sample of $19.3 \pm 0.7$ pb$~{-1}$ accumulated by the Collider Detector at Fermilab (CDF). The cross section is measured in the central rapidity region $|y| < 1$ for $p_T(B) > 6.0$ GeV/$c$ by fully reconstructing the $B$ meson decays $B~{+}\rightarrow J/\psi K~{+}$ and $B~{0}\rightarrow J/\psi K~{*0}(892)$, where $J/\psi \rightarrow \mu~+\mu~-$ and $K~{*0} \rightarrow K~+ \pi~-$. A comparison is made to the theoretical QCD prediction calculated at next-to-leading order.

3 data tables

Charged B meson cross section.

Average B meson cross section (including charged and neutral).

Total integrated B meson cross section above 6 GeV.


Observation of top quark production in anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 74 (1995) 2626-2631, 1995.
Inspire Record 393084 DOI 10.17182/hepdata.42453

We establish the existence of the top quark using a 67 pb^-1 data sample of Pbar-P collisions at Sqrt(s) = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with t-tbar decay to WW b-bbar, but inconsistent with the background prediction by 4.8 sigma. Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be 176 +/-8(stat) +/- 10(sys.) GeV/c^2, and the t-tbar production cross section to be 6.8 +3.6 -2.4 pb.

1 data table

Cross section refers to top quark mass equal 176. (+- 8 +- 10) GeV.. Error contains both statistical and systematic uncertainty.