Using the CLEO detector at the Cornell Electron Storage Ring, the authors have measured the leptonic branching fractions, Bμμ, of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 2.7±0.3±0.3%, 1.9±1.3±0.5%, and 3.3±1.3±0.7%, respectively. Combining these values of Bμμ with previous measurements of the leptonic widths of these resonances, the authors find the total widths of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 48±4±4, 27±17±6, and 13±4±3 keV.
No description provided.
The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.
No description provided.
A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.
Data on non-collinearity and angular distribution.
Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
The ν¯μ charged-current total cross section has been measured with the Fermilab 15-ft bubble chamber plus the external muon identifier and internal "picket fence." Beam monitoring information used for the flux calculation was obtained from Blair et al., whose detector operated in the same dichromatic beam. The present result, averaged over ν¯μ energies from 5 to 250 GeV, is σE=(0.340±0.019±0.022)×10−38 cm2/(GeV nucleon) for an isoscalar target.
No description provided.
We have studied the quasielastic reaction νμn→μ−p in an exposure of the Fermilab deuterium-filled 15-foot bubble chamber to a high-energy wide-band neutrino beam. From an analysis of the Q2 distribution based on the standard V−A theory, the axial-vector mass in a dipole parametrization of the axial-vector form factor is determined to be MA=1.05−0.16+0.12 GeV, consistent with the values previously reported from low-energy experiments.
Measured Quasi-Elastic total cross section.
Inclusive ϕ-meson production has been measured for 100 GeV/cK−,\(\bar p\) andp incident on a Be target. Differential cross sectionsdσ/dxF anddσ/dp⊥2 are presented in the interval 0.075<xF<0.225 and 0<p⊥<1 GeV/c respectively. The shape of thedσ/dxF distributions agrees with predictions from a quark fusion model. Comparison with cross sections measured on a hydrogen target in the samexF andp⊥ range suggest a linearA-dependence fromA=1 toA=9.
No description provided.
Charm D-meson production in 360 GeV π − p interactions has been studied using the high-resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer. The data show evidence for leading quark effects both in the number of D-meson types and in the Feynman x distributions. The production cross section is of the form d 2 δ d x d p T 2 ∞(1-x) n exp (-ap T 2 ) with n = 2.8±0.8 and a = 1.1±0.3 (GeV/ c ) −2 . The x distribution is, however, compatible with the presence of both central ( n = 6) and leading (n = 1) D / D production. The fraction of D-messons in the leading component is estimated to be ≈30%. The rapidity gap between members of reconstructed charm pairs is small compared to the available rapidity range. The inclusive cross section for single D-messons in the forward direction is: δ(D/ D )=(40 8 +15 )μ b ( for x>0) .
No description provided.
Charm D-meson production in 360 GeV pp interactions has been studied using the high-resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer. D-mesons are produced with a differential cross section of the form d 2 σ d x d p T 2 δ(1-x) n exp (-ap T 2 ) , with n =1.8± 0.8 and a =1.1±0.03 GeV/ c −2 for the Feynman x and Transverse momentum p T behaviour. The inclusive partle prticle crossssection for D and D̄;measured to be: σ(D/ D ̄ ) = (56 −12 25 μ b (for all x ). The Λ c D ̄ cross section can be estimated to be ≈20 μ b. No strong correlation is observed between DD̄ pairs. The results are compared with results from a study of D-meaon production in 360 GeV/ c π − p interactions also using LEBC-EHS.
No description provided.
Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.
Cross section for ABS(cos(theta)) <0.85.
No description provided.