The inclusive WZ production cross section is measured in proton-proton collisions at a centre-of-mass energy of 13.6 TeV, using data collected during 2022 with the CMS detector, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. The measurement uses multileptonic final states and a simultaneous likelihood fit to the number of events in four different lepton flavour categories: eee, ee$\mu$, $\mu\mu $e, and $\mu\mu\mu$. The selection is optimized to minimize the number of background events, and relies on an efficient prompt lepton discrimination strategy. The WZ production cross section is measured in a phase space defined within a 30 GeV window around the Z boson mass, as $\sigma_{\text{total}}$(pp $\to$ WZ) = 55.2 $\pm$ 1.2 (stat) $\pm$ 1.2 (syst) $\pm$ 0.8 (lumi) $\pm$ 0.3 (theo) pb. In addition, the cross section is measured in a fiducial phase space closer to the detector-level requirements. All the measurements presented in this paper are in agreement with standard model predictions.
Number of events for the different lepton flavour categories in the ZZ control region accounting for the fit to data. The hatched band includes all systematic uncertainties in the MC prediction. The vertical bars of the data account for the statistical uncertainty. The ratio panels show the ratio between data (black markers) with respect to the total prediction after the fit to data. Processes with a small contribution to this region are grouped in the ``Other" category
Number of events for the different lepton flavour categories in the ttZ control region accounting for the fit to data. The hatched band includes all systematic uncertainties in the MC prediction. The vertical bars of the data account for the statistical uncertainty. The ratio panels show the ratio between data (black markers) with respect to the total prediction after the fit to data. Processes with a small contribution to this region are grouped in the ``Other" category
Number of events for the different lepton flavour categories in the X+#gamma control region accounting for the fit to data. The hatched band includes all systematic uncertainties in the MC prediction. The vertical bars of the data account for the statistical uncertainty. The ratio panels show the ratio between data (black markers) with respect to the total prediction after the fit to data. Processes with a small contribution to this region are grouped in the ``Other" category
A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.
Summary of results in terms of best fit value of the Wilson coefficients and the intervals where the test statistic is below 1 and 4, with up to the linear and quadratic terms in the SMEFT parameterization.
Profiled limits on the energy scale $\Lambda$ for three different assumptions for each Wilson coefficient while fixing the other Wilson coefficients to their SM values with up to the linear and quadratic terms in SMEFT parameterization.
Observed two-dimensional likelihood scans for $c_{Hq}^{(1)}$ vs. $c_{Hq}^{(3)}$ while allowing the other coefficients to float freely at each point of the sca.
A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.
The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.
The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.
Distributions in $m_{Z'}^{rec}$ for data in the SRs, together with fits of the background functions under the background-only hypothesis for the muon channel. The number of observed events in each bin is divided by the bin width. The signal predictions are shown for different Z' boson masses, normalized to an arbitrary cross section of 1 fb. In the panels below the distributions, the ratios of data to the background function are displayed. The shaded green areas represent the statistical uncertainty from the fit. The $\chi^2$ values per number of degrees of freedom ($\chi^2$/n.d.f.) and the corresponding $p$-values are provided for each fit.
A measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb$^{-1}$. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5 $\pm$ 1.6 (stat) $^{+2.6}_{-2.5}$ (syst) $\pm$ 1.2 (lumi) pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 $\pm$ 1.5 (stat) $\pm$ 2.4 (syst) $\pm$ 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5 $^{+3.5}_{-3.7}$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.
Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\Delta R_\mathrm{med}(\mathrm{j,j')}}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\mathit{m}(\mathrm{u},\mathrm{u'})}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
Distributions for data and expected signal and background contributions of the MVA score for the e + jets channel in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.
Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.
A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution for the SM MC after passing the selection criteria listed in Table 2.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution the 1800 GeV mass gluino R-hadron (right), after passing the selection criteria listed in Table 2.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the FAIL region for events passing the event selection and with $55 < p_{\mathrm{T}} < 200$ GeV.
An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 $\pm$ 0.12 GeV, and an upper limit on the width $\Gamma_\mathrm{H}$$\lt$ 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 $^{+2.0}_{-1.5}$ MeV, in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations.
Observed profile likelihood projection on mH, for different flavor categories combined, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
Observed profile likelihood projection on mH, for the 4mu final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
Observed profile likelihood projection on mH, for the 4e final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
We present the first forward-rapidity measurements of elliptic anisotropy of open-heavy-flavor muons at the BNL Relativistic Heavy Ion Collider. The measurements are based on data samples of Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The measurements are performed in the pseudorapidity range $1.2<|\eta|<2$ and cover transverse momenta $1<p_T<4$~GeV/$c$. The elliptic flow of charged hadrons as a function of transverse momentum is also measured in the same kinematic range. We observe significant elliptic flow for both charged hadrons and heavy-flavor muons. The results show clear mass ordering of elliptic flow of light- and heavy-flavor particles. The magnitude of the measured $v_2$ is comparable to that in the midrapidity region. This indicates that there is no strong longitudinal dependence in the quark-gluon-plasma evolution between midrapidity and the rapidity range of this measurement at $\sqrt{s_{_{NN}}}=200$~GeV.
Lastgap $v_2$
Hadron-Muon Ratio at $1.2 < |\eta| < 2.0$
HF Fraction at $1.2 < |\eta| < 2.0$ Top Tuned Slim
We report the first measurement of the azimuthal anisotropy of J$/\psi$ at forward rapidity ($1.2<|\eta|<2.2$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV at the Relativistic Heavy Ion Collider. The data were collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The second Fourier coefficient ($v_2$) of the azimuthal distribution of $J/\psi$ is determined as a function of the transverse momentum ($p_T$) using the event-plane method. The measurements were performed for several selections of collision centrality: 0%--50%, 10%--60%, and 10%-40%. We find that in all cases the values of $v_2(p_T)$, which quantify the elliptic flow of J$/\psi$, are consistent with zero. The results are consistent with measurements at midrapidity, indicating no significant elliptic flow of the J$/\psi$ within the quark-gluon-plasma medium at collision energies of $\sqrt{s_{_{NN}}}=200$ GeV.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 1], [1, 2], [2, 3], and [3, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 0.5], [0.5, 1], [1, 5], and [0, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--40% centrality with pT binned by [0, 2], [2, 5], and [5, 10] GeV/c.