Version 2
Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR Collaboration 19 & STAR collaborations Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 109 (2024) 044914, 2024.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at RHIC. A significant $v_3$ signal is observed for protons, whose magnitude increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a rapidity slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

12 data tables

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

$v_3\{\Psi_1\}$ vs. centrality for $\pi^+$, $\pi^-$, and protons using the event plane method in $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

More…

Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

22 data tables

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $p$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $d$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The $p_{T}$ dependencies of $v_{1}$ within $-0.1<y<0$ for $t$ in 10-40% mid-central Au+Au collisions at 3 GeV.

More…

Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

10 data tables

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

Centrality dependence of the proton cumulant ratios for Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 GeV. Protons are from $-0.5 < y < 0$ and $0.4 < p_{T} < 2.0$ GeV/$c$. Systematic uncertainties are represented by gray bars. Statistical uncertainties are smaller than marker size. CBWC is applied to all cumulant ratios. While open squares represent the data without the VFC correction, blue triangles and red circles are the results with VFC using the $\langle N_{\rm{part}} \rangle$ distributions from the UrQMD and Glauber models, respectively. UrQMD model results are represented as gold dashed line.

More…

Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

32 data tables

Event plane resolution as a function of collision centrality from Au+Au collisions at $\sqrt{s_{NN}}$=3 (a), 27 and 54.4 GeV (b). In case of the 3 GeV collisions, $\Psi_{1}$ is used to determine the event plane resolutions for the first and second harmonic coefficients shown as $R_{11}$ and $R_{12}$ in left panel. In the 27 and 54.4 GeV collisions, $\Psi_{2}$ is used to evaluate the second order event plane resolution, see right panel. In all cases, the statistic uncertainties are smaller than symbol sizes.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

More…

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

6 data tables

The measured invariant-mass distributions of two classes of $\Lambda$-hyperon decays. The decay classes are defined using the scalar triple product $\left(\vec{p}_\Lambda\times\vec{p}_p^*\right)\cdot \vec{B}_{\rm STAR}$, which is positive for right decays and negative for left decays. The right decay class has a notably sharper invariant-mass distribution than the left decay class, and this is due to the effects of daughter tracks crossing in the STAR TPC with the STAR magnetic field anti-parallel to the lab frame's z direction. The opposite pattern is obtained by flipping the sign of the STAR magnetic field or by reconstructing $\bar{\Lambda}$ hyperons.

The signal polarizations extracted according to the restricted invariant-mass method as a function of $\phi_\Lambda - \phi_p^*$, for positive-rapidity $\Lambda$ hyperons. The sinusoidal behavior is driven by non-zero net $v_1$. The vertical shift corresponds to the vorticity-driven polarization; in collider mode, where the net $v_1$ is zero, this dependence on $\phi_\Lambda - \phi_p^*$ does not exist.

The integrated Global $\Lambda$-hyperon Polarization in mid-central collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The trend of increasing $\overline{P}_{\rm H}$ with decreasing $\sqrt{s_{\rm NN}}$ is maintained at this low collision energy. Previous experimental results are scaled by the updated $\Lambda$-hyperon decay parameter $\alpha_\Lambda=0.732$ for comparison with this result. Recent model calculations extended to low collision energy show disagreement between our data and AMPT and rough agreement with the 3-Fluid Dynamics (3FD) model. Previous measurements shown alongside our data can be found at: https://www.hepdata.net/record/ins750410?version=2; https://www.hepdata.net/record/ins1510474?version=1; https://www.hepdata.net/record/ins1672785?version=2; https://www.hepdata.net/record/ins1752507?version=2.

More…

Study of the process $e^+e^-\to\omega\eta\pi^0$ in the energy range $\sqrt{s} <2$ GeV with the SND detector

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 94 (2016) 032010, 2016.
Inspire Record 1471515 DOI 10.17182/hepdata.82577

The process $e^+e^-\to\omega\eta\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\to\omega\eta\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \to \omega\eta\pi^0$ is found to be $\omega a_0(980)$.

1 data table

The energy interval, integrated luminosity ($L$), number of selected events ($N$), estimated number of background events ($N_{bkg}$), detection efficiency for $e^+e^-\to\omega\eta\pi^0\to 7\gamma$ events ($\epsilon$), radiative correction ($\delta+1$), and $e^+e^-\to\omega\eta\pi^0$ Born cross section ($\sigma$). The shown cross-section errors are statistical. The systematic error is 4.2%. The 90% confidence level upper limits are listed for the first two energy intervals.


Production of Positive π-Mesons in Hydrogen by 660 MeV Protons

Meshkovskii, A.G. ; Pligin, Yu.S. ; Shalamov, Ya.Ya. ; et al.
Zh.Eksp.Teor.Fiz. 31 (1957) 560, 1957.
Inspire Record 1408598 DOI 10.17182/hepdata.70459

With observation angles of 29° and 46° relative to a proton beam there were obtained energy spectra for the production of charged rr-mesons in the process p+ p->rr+, Differential cross sections were measured for the angles of 29°, 46° and 65° in the laboratory system.

1 data table

No description provided.


An Investigation of the $\pi + p \longrightarrow n + {\pi}^0$ Charge Exchange Scattering and the ${\pi}^{-} + p \longrightarrow n + {\eta}({\eta} {\longrightarrow} 2\gamma)$ Reaction in the 1.55-4.5 BeV/c Region

Barmin, V.V. ; Dolgolenko, A.G. ; Krestnikov, Yu.S. ; et al.
Sov.Phys.JETP 19 (1964) 102-106, 1964.
Inspire Record 1407540 DOI 10.17182/hepdata.70207

The rr- + p- n + rr0 charge-exchange scattering and the rr- + p- n + 1J ( 1J- 2y) reaction were investigated in 1.55-4.5 BeVIc region in a 17-liter propane-xenon bubble chamber. The total cross sections of both reactions were measured in this region. The angular distributions of the rr0 mesons in the charge-exchange reaction were obtained. The backward exchange-scattering cross sections du( rr- + p- n + rr 0 )ldQ were estimated.

3 data tables

No description provided.

No description provided.

No description provided.


Investigation of $\pi^- + p \rightarrow \pi^0 + n$ exchange scattering at 2.8. BeV/c

Barmin, V.V. ; Dolgolenko, A.G. ; Meshkovskii, A.G. ; et al.
Sov.J.Nucl.Phys. 4 (1967) 592-595, 1967.
Inspire Record 1407282 DOI 10.17182/hepdata.69980

None

3 data tables

No description provided.

No description provided.

No description provided.