The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
No description provided.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
Results on backward (3 π ) - system produced in π - p→p f π + π - π - reaction at 9 and 12 GeV/ c are given. The ϱ 0 π - mass spectra show two clear signals at 1050 MeV (A 1 region) and 1303 MeV (A - 2 ). The width of the enhancement in the A 1 region (195±32 MeV) is narrower than found in diffractive experiments. Total backward cross sections for those signals are of the same order of magnitude (∼0.5 μb).
No description provided.
A partial wave analysis of the non-diffractively produced ( K ̄ 0 π + π - system has been performed. The system was produced in the reaction K - p→ K ̄ 0 π + π - n at 10 GeV/ c , measured in the CERN Omega spectrometer. Besides the well-known K ∗ (1420) resonance, we find good evidence for the production of Q 2 (1400) and some indication for Q 1 (1290) production in J P =1 + . In addition we clearly observe a bump in the 1800 MeV region, the properties of which are discussed.
BR(<K RHO>/<K* PI>) FOUND TO BE 0.21 +- 0.08 AND 0.9 +- 0.3 FOR K*(1420) AND K*(1780) RESPECTIVELY.
DENSITY MATRIX FOR JP=2+ IN THE REGION 1.3 < M(K PI PI) < 1.55 GEV.
DENSITY MATRIX FOR JP=3- IN THE REGION 1.6 < M(K PI PI) < 1.9 GEV.
We present the observation of a J P = 4 + , I G = 1 − state in the reaction π − p → K S 0 K − p at 10 GeV/ c measured with a non-magnetic spectrometer at the CERN proton synchrotron (PS). A spherical harmonics moments analysis of the K S 0 K − system shows a signal at ∼ 1900 MeV in the 〈 Y 7 0 〉 and 〈 Y 8 0 〉 moments, indicative of a spin 4.
No description provided.
We perform an amplitude analysis of 10 GeV/ c π − p → K − K S 0 p data as a function of K − K 0 mass from threshold up to 2 GeV. We find that the A 2 and g resonances are produced dominantly by natural and unnatural parity exchange, respectively, and we determine their resonance parameters. We present further evidence for the I = 1, 4 + state A 2 ∗ (1900), in particular by isolating interference effects. The structure of S-wave K − K 0 production suggests an I = 1, 0 + state just below 1300 MeV of width about 250 MeV.
CROSS SECTIONS FROM FITTING MASS SPECTRUM. THE RESONANT AMPLITUDE CONTRIBUTIONS ALSO GIVEN IN PAPER.
For the first time, the line reversed reactions π + p→K + Σ + and K − p→ π − Σ + have been studied in the same apparatus. We present the differential cross sections and polarizations over a large t range and at two momenta, 7.0 and 10.1 GeV/ c . The differential cross sections as a function of t are shown for the first time to cross over. Going from the lower to the higher momentum, the differences in cross section between the two reactions diminish at low | t | by about a factor 2. We find large polarizations of opposite sign for the two reactions. The momentum dependence, presented in the form of α eff ( t ) for the t range 0 to −2 (GeV/ c ) 2 , is compared with the expectations from the K ∗ −K ∗∗ trajectory.
-TMIN = 0.0100 GEV**2.
-TMIN = -0.0087 GEV**2.
-TMIN = 0.0067 GEV**2.
Cross sections for various channels in 3 prong + V 0 final states of K − n interactions are obtained at 8.25 GeV/ c . An energy dependence study of the quasi two-body reactions Σ − (1385) + vector meson and ΛB − seem to imply the presence of cuts in the Regge exchange formalism, whereas the reaction Δ(1236) K ∗ (890) does not require such cuts. Upper limits of 1 and 2 μb are found for the reactions K − n → Λ A 1 and K − n → Λ A 2 .
CROSS SECTIONS ARE CORRECTED FOR ALL RESONANCE DECAY MODES EXCEPT FOR K*- DEL0 PRODUCTION WHICH IS ONLY CORRECTED FOR UNSEEN AK0 DECAYS. NO EVIDENCE FOR NON-DIFFRACTIVE A1 AND A2 PRODUCTION.
MAXIMUM LIKELIHOOD EXPONENTIAL FITS TO DIFFERENTIAL CROSS SECTIONS.
The production of the φ and ω mesons has been studied in the reactions p p → φ(ω)π + π − and p p → φ(ω) ϱ 0 at 0.70–0.76 GeV /c . The c.m. angular distribution of the φ meson in the reaction p p → φπ + π − is found to be consistent with isotropy. The corresponding distribution for ω is not. the ratio σ( p p → φπ + π − ) σ( p p → ωπ + π − ) is (10 ± 2.4) · 10 −3 , which leads to a value of (19 ± 5) · 10 −3 when corrected for the phase-space factor. Implications of this result for the OZI rule are discussed.
No description provided.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.