Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 772 (2017) 567-577, 2017.
Inspire Record 1507090 DOI 10.17182/hepdata.78365

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

5 data tables

Charged-particle pseudorapidity density for ten centrality classes over a broad $\eta$ range in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02\,\mathrm{TeV}$. Boxes around the points reflect the total uncorrelated systematic uncertainties, while the filled squares on the right reflect the correlated systematic uncertainty (evaluated at $\eta=0$). Statistical errors are generally insignificant and smaller than the markers. Also shown is the reflection of the $3.5<\eta<5$ values around $\eta=0$ (open circles). The line corresponds to fits of the difference between two Gaussians centred at $\eta=0$ ($f_{\text{GG}}$) [PLB754.373] to the data.

Charged-particle pseudorapidity density at midrapidity in most perihperhal (80-90%) Pb-Pb collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5.02\,\mathrm{TeV}$.

Total number of charged particles as a function of the mean number of participating nucleons [PRC88.044909]. The total charged-particle multiplicity is given as the integral over $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ over the measured region ($-3.5<\eta<5$) and extrapolations from fitted functions in the unmeasured regions. The contribution from unmeasured $\eta$ regions amounts to $\approx30\%$ of the total number of charged particles. The uncertainty on the extrapolation to the unmeasured pseudorapidity region is smaller than the size of the markers. The contribution to the systematic uncertainties from the centrality determination and electromagnetic processes are vanishing compared to the contribution from the largest differences between the fitted functions. A function inspired by factorisation [PRC83.024913] is fitted to the data, and the best fit yields $a=51.5\pm7.3$, $b=0.16\pm0.05$.

More…

Jet-like correlations with neutral pion triggers in pp and central Pb-Pb collisions at 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 763 (2016) 238-250, 2016.
Inspire Record 1483164 DOI 10.17182/hepdata.75246

We present measurements of two-particle correlations with neutral pion trigger particles of transverse momenta $8 < p_{\mathrm{T}}^{\rm trig} < 16~\mathrm{GeV}/c$ and associated charged particles of $0.5 < p_{\mathrm{T}}^{\rm assoc} < 10~\mathrm{GeV}/c$ versus the azimuthal angle difference $\Delta\varphi$ at midrapidity in pp and central Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with ALICE. The new measurements exploit associated charged hadrons down to $0.5~\mathrm{GeV}/c$, which significantly extends our previous measurement that only used charged hadrons above $3~\mathrm{GeV}/c$. After subtracting the contributions of the flow background, $v_2$ to $v_5$, the per-trigger yields are extracted for $|\Delta\varphi|<0.7$ on the near and for $|\Delta\varphi-\pi| < 1.1$ on the away side. The ratio of per-trigger yields in Pb--Pb to those in pp collisions, $I_{\mathrm{AA}}$, is measured on the near and away side for the $0$--$10$\% most central Pb--Pb collisions. On the away side, the per-trigger yields in Pb--Pb are strongly suppressed to the level of $I_{\mathrm{AA}} \approx 0.6$ for $p_{\mathrm{T}}^{\rm assoc} > 3~\mathrm{GeV}/c$, while with decreasing momenta an enhancement develops reaching about $5$ at low $p_{\mathrm{T}}^{\rm assoc}$. On the near side, an enhancement of $I_{\mathrm{AA}}$ between $1.2$ at the highest to $1.8$ at the lowest $p_{\mathrm{T}}^{\rm assoc}$ is observed. The data are compared to parton-energy-loss predictions of the JEWEL and AMPT event generators, as well as to a perturbative QCD calculation with medium-modified fragmentation functions. All calculations qualitatively describe the away-side suppression at high $p_{\mathrm{T}}^{\rm assoc}$. Only AMPT captures the enhancement at low $p_{\mathrm{T}}^{\rm assoc}$, both on the near and away side. However, it also underpredicts $I_{\mathrm{AA}}$ above $5$ GeV/$c$, in particular on the near-side.

4 data tables

Charged-particle associated yields relative to $\pi^{0}$ trigger particles versus $\Delta\varphi$ in pp collisions at $\sqrt{s_{NN}}$=2.76 TeV. The $\pi^{0}$ trigger momentum range is $8< p_{T}^{trig} < 16~GeV/c$, and associated charged particle ranges are $0.5 < p_{T}^{assoc} < 1$, $1 < p_{T}^{assoc} < 2$, $2 < p_{T}^{assoc} < 4$ and $4 < p_{T}^{assoc} < 6~GeV/c$.

Charged-particle associated yields relative to $\pi^{0}$ trigger particles versus $\Delta\varphi$ in Pb-Pb collisions at $\sqrt{s_{NN}}$=2.76 TeV. The $\pi^{0}$ trigger momentum range is $8< p_{T}^{trig} < 16~GeV/c$, and associated charged particle ranges are $0.5 < p_{T}^{assoc} < 1$, $1 < p_{T}^{assoc} < 2$, $2 < p_{T}^{assoc} < 4$ and $4 < p_{T}^{assoc} < 6~GeV/c$.

Per-trigger yield modification, $I_{\rm AA}$, on the near side with trigger $\pi^{0}$ particle at $8 < p_{T}^{trig} < 16~GeV/c$ for $0$-$10$$\%$ Pb-Pb collisions at $\sqrt{s_{NN}}$= 2.76 TeV.

More…

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 762 (2016) 376-388, 2016.
Inspire Record 1456145 DOI 10.17182/hepdata.73940

We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|\eta|$. We assess the validity of extended longitudinal scaling of $\mathrm{v}_2$ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 117 (2016) 182301, 2016.
Inspire Record 1452590 DOI 10.17182/hepdata.74142

We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from non-flow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{_{\rm NN}}}=2.76$ TeV by the ALICE experiment at the Large Hadron Collider (LHC). The centrality dependence of correlation between event-by-event fluctuations of the elliptic, $v_2$, and quadrangular, $v_4$, flow harmonics, as well as of anti-correlation between $v_2$ and triangular, $v_3$, flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry-dominated (in mid-central collisions) and fluctuation-dominated (in the most central collisions). Comparisons are made to predictions from MC-Glauber, viscous hydrodynamics, AMPT and HIJING models. Together with the existing measurements of individual flow harmonics the presented results provide further constraints on initial conditions and the transport properties of the system produced in heavy-ion collisions.

4 data tables

Centrality dependence of observables SC(4,2) and SC(3,2) in Pb-Pb collisions at 2.76 TeV.

Centrality dependence of normalized observables SC(4,2) and SC(3,2) in Pb-Pb collisions at 2.76 TeV.

Centrality dependence of observables SC(4,2) and SC(3,2) in Pb-Pb collisions at 2.76 TeV, in 0-10% most central collisions.

More…

Measurement of transverse energy at midrapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 034903, 2016.
Inspire Record 1427723 DOI 10.17182/hepdata.73993

We report the transverse energy ($E_{\mathrm T}$) measured with ALICE at midrapidity in Pb-Pb collisions at ${\sqrt{s_{\mathrm {NN}}}}$ = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean $E_{\mathrm T}$ per unit pseudorapidity ($\eta$), $\langle $d$E_{\mathrm T}/$d$\eta \rangle$, in 0-5% central collisions is 1737 $\pm$ 6(stat.) $\pm$ 97(sys.) GeV. We find a similar centrality dependence of the shape of $\langle $d$E_{\mathrm T}/$d$\eta \rangle$ as a function of the number of participating nucleons to that seen at lower energies. The growth in $\langle $d$E_{\mathrm T}/$d$\eta \rangle$ at the LHC ${\sqrt{s_{\mathrm {NN}}}}$ exceeds extrapolations of low energy data. We observe a nearly linear scaling of $\langle $d$E_{\mathrm T}/$d$\eta \rangle$ with the number of quark participants. With the canonical assumption of a 1 fm/$c$ formation time, we estimate that the energy density in 0-5% central Pb-Pb collisions at ${\sqrt{s_{\mathrm {NN}}}}$ = 2.76 TeV is 12.3 $\pm$ 1.0 GeV/fm$^3$\xspace and that the energy density at the most central 80 fm$^2$ of the collision is at least 21.5 $\pm$ 1.7 GeV/fm$^3$. This is roughly 2.3 times that observed in 0-5% central Au-Au collisions at ${\sqrt{s_{\mathrm {NN}}}}$ = 200 GeV.

3 data tables

$\langle $d$E_{\mathrm T}/$d$\eta \rangle / (\langle N_{\mathrm{part}}/2\rangle)$ versus $N_{\mathrm{part}}$, $\langle $d$E_{\mathrm T}/$d$\eta \rangle / (\langle N_{\mathrm{quark}}/2\rangle)$, and $\epsilon\tau$ versus $N_{\mathrm{part}}$ at midrapidity calculated from the tracking detectors,.

$N_{part}$, $N_{quark}$, and area from Glauber calculations.

$\langle $d$E_{\mathrm T}/$d$\eta \rangle$/$\langle $d$N_{\mathrm{ch}}/$d$\eta \rangle$ versus $N_{part}$.


Version 2
Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 132302, 2016.
Inspire Record 1419244 DOI 10.17182/hepdata.72886

We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2<p_{\rm T}<5$ GeV/$c$. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multi-particle cumulant method. Compared to results from Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV, the anisotropic flow coefficients $v_{2}$, $v_{3}$ and $v_{4}$ are found to increase by ($3.0\pm0.6$)%, ($4.3\pm1.4$)% and ($10.2\pm3.8$)%, respectively, in the centrality range 0-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.

22 data tables

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_3$ and $v_4$, with two-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

More…

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222302, 2016.
Inspire Record 1410589 DOI 10.17182/hepdata.73052

The pseudorapidity density of charged particles ($\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV. It increases with centrality and reaches a value of $1943 \pm 54$ in $|\eta|<0.5$ for the 5% most central collisions. A rise in $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of $\sqrt{s_{\rm NN}}$ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of the average number of participant nucleons, ${\langle N_\mathrm{part} \rangle}$, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ from $\sqrt{s_{\rm NN}}$ = 2.76 TeV to $\sqrt{s_{\rm NN}}$ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.

3 data tables

The values of ${\langle N_\mathrm{part} \rangle}$ obtained with the Glauber model are measured in $|\eta|$ < 0.5 for eleven centrality classes. The statistical error contribution being negligible.

The $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ values measured in $|\eta|$ < 0.5 for eleven centrality classes.

The $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ values measured in $|\eta|$ < 0.5 for eleven centrality classes. The statistical error contribution being negligible.


Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

4 data tables

Measurement of $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ for all centralities and a broad $\eta$ range. Combined and symmetrised $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ over 30-90 PCT centrality from both SPD and FMD. Previously published results for 0-30 PCT over the full pseudorapidity range available elsewhere [PLB726.610]. Please note the systematic uncertainty from the centrality determination is encoded as a qualifier in the table header.

Full--width half--maximum of the charged--particle pseudorapidity distributions versus the average number of participants. The uncertainties on the ALICE measurements are from the fit of $f_{\text{GG}}$ only and evaluated at $95\%$ confidence level.

The charged--particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants. Data for the 0 to 30 PCT most central events, and in ETARAP < 0.5 is available in previously published results [PLB726.610,PRC88.044910]. The uncertainties on $\left\langle N_{\text{part}}\right\rangle$ from the Glauber calculations not included (see [PRC88.044910]).

More…

Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 93 (2016) 034916, 2016.
Inspire Record 1384270 DOI 10.17182/hepdata.72304

We report on results obtained with the Event Shape Engineering technique applied to Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV. By selecting events in the same centrality interval, but with very different average flow, different initial state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient $v_2$ to be almost independent of transverse momentum $p_\rm{T}$, as expected if this effect is due to fluctuations in the initial geometry of the system. Charged hadron, pion, kaon, and proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.

156 data tables

Ratio of $\rm v_{2}\{{SP}\}$ in the $\rm large-q_{2}^{TPC}$ to unbiased sample, centrality 0-5%.

Ratio of $\rm v_{2}\{{SP}\}$ in the $\rm small-q_{2}^{TPC}$ to unbiased sample, centrality 0-5%.

Ratio of $\rm v_{2}\{{SP}\}$ in the $\rm large-q_{2}^{V0C}$ to unbiased sample, centrality 0-5%.

More…

Version 2
Measurement of charged-particle spectra in Pb+Pb collisions at $\sqrt{{s}_\mathsf{{NN}}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2015) 050, 2015.
Inspire Record 1360290 DOI 10.17182/hepdata.67531

Charged-particle spectra obtained in 0.15 nb${}^{-1}$ of Pb+Pb interactions at $\sqrt{{s}_\mathsf{{NN}}}=2.76$TeV and 4.2 pb${}^{-1}$ of pp interactions at $\sqrt{s}=2.76$ TeV with the ATLAS detector at the LHC are presented in a wide transverse momentum ($0.5 < p_{\mathrm{T}} < 150$ GeV) and pseudorapidity ($|\eta|<2$) range. For Pb+Pb collisions, the spectra are presented as a function of collision centrality, which is determined by the response of the forward calorimeter located on both sides of the interaction point. The nuclear modification factors $R_{\mathrm{AA}}$ and $R_{\mathrm{CP}}$ are presented in detail as function of centrality, $p_{\mathrm{T}}$ and $\eta$. They show a distinct $p_{\mathrm{T}}$-dependence with a pronounced minimum at about 7 GeV. Above 60 GeV, $R_{\mathrm{AA}}$ is consistent with a plateau at a centrality-dependent value, within the uncertainties. The value is $0.55\pm0.01(stat.)\pm0.04(syst.)$ in the most central collisions. The $R_{\mathrm{AA}}$ distribution is consistent with flat $|\eta|$ dependence over the whole transverse momentum range in all centrality classes.

121 data tables

Charged-particle spectra for pp.

Charged-particle spectra in different centrality intervals for Pb+Pb.

Charged-particle spectra in different centrality intervals for Pb+Pb (not shown in Fig. 10).

More…