Measurement of single spin asymmetry in eta meson production in p(pol.) p and in anti-p(pol.) p interactions in the beam fragmentation region at 200-GeV/c.

The Fermilab E704 collaboration Adams, D.L. ; Bonner, B.E. ; Corcoran, M.D. ; et al.
Nucl.Phys.B 510 (1998) 3-11, 1998.
Inspire Record 449811 DOI 10.17182/hepdata.51687

We present experimental results on measuring a single spin asymmetry in η-meson production in the interaction of transversely polarized protons and antiprotons at p lab = 200 GeV / c with a proton target in the region 0.2 < x F < 0.7 for p ↑ p , 0.3 < x F < 0.7 for p ̄ ↑p and 0.7 < p T < 2.0 GeV / c . A comparison of single spin asymmetries in π- and η-meson production is made.

2 data tables

The true asymmetry for ETA production in proton-proton collisions.

The true asymmetry for ETA production in antiproton-proton collisions.


Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table

No description provided.


Differential cross-section for n p elastic scattering in the angular region 50-degrees < Theta* < 180-degrees at 459-MeV

Northcliffe, L.C. ; Jain, M. ; Evans, M.L. ; et al.
Phys.Rev.C 47 (1993) 36-46, 1993.
Inspire Record 358672 DOI 10.17182/hepdata.26016

The differential cross section for n-p elastic scattering at 459 MeV in the c.m. angular region 50°<θ*<180° has been measured with high statistical precision and good relative accuracy. The uncertainty in the absolute normalization (based on the simultaneously measured yield of deuterons from the np→dπ0 reaction) was initially estimated to be ∼7%. The results agree well with back-angle data obtained independently at LAMPF but less well with results from Saclay and the Princeton-Pennsylvania Accelerator and, except for a normalization difference of 10%, are fairly well represented by a phase-shift fit. The pole-extrapolation method of Chew was used to extract the pion-nucleon coupling constant f2 from the back-angle portion of the data. The value obtained, f2=0.069, is somewhat smaller than the values 0.0735–0.0790 obtained from analyses of pion-nucleon scattering, tending to confirm the need for an upward renormalization of the angular distribution by ∼10%.

1 data table

No description provided.


Determination of Proton Nucleon Analyzing Powers and Spin Rotation Depolarization Parameters at 500-{MeV}

Marshall, J.A. ; Barlett, M.L. ; Fergerson, R.W. ; et al.
Phys.Rev.C 34 (1986) 1433-1438, 1986.
Inspire Record 240068 DOI 10.17182/hepdata.26283

500 MeV p→+p elastic and quasielastic, and p→+n quasielastic, analyzing powers (Ay) and spin-rotation-depolarization parameters (DSS, DSL, DLS, DLL, DNN) were determined for center-of-momentum angular ranges 6.8°–55.4° (elastic) and 22.4°–55.4° (quasielastic); liquid hydrogen and deuterium targets were used. The p→+p elastic and quasielastic results are in good agreement; both the p→+p and p→+n parameters are well described by current phase shift solutions.

6 data tables

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

The spin depolarization and spin rotation parameters in 500 MeV P P elastic interactions. Additional normalization uncertainty of 1 PCT (2 PCT for DLL and DLS).

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

More…

Extreme Back Angle n H-2 Elastic Scattering at 794-MeV

Bonner, B.E. ; Simmons, J.E. ; Evans, M.L. ; et al.
Phys.Rev.C 17 (1978) 671-675, 1978.
Inspire Record 134672 DOI 10.17182/hepdata.26401

The cross section for elastic scattering of 794-MeV neutrons by deuterium has been measured for neutron center of mass angles from 139° to 179°. The angular distribution is fitted very well both by an empirical function αeβ(μ−μ180∘) and by a calculation that uses the one parameter Craigie-Wilkin triangle diagram technique. [NUCLEAR REACTION nH2→H2n, E=794 MeV; measured σ(θ). Calculated σ(θ) with triangle diagram techniques.]

1 data table

X ERROR H = 12.60 CM. X ERROR D(THETA) = 2.0000 DEG.


Threshold Measurement of the Reaction $\bar{p} p \to \bar{\ell}$ambda $\lambda$ at {LEAR}

Barnes, P.D. ; Besold, R. ; Birien, P. ; et al.
Phys.Lett.B 229 (1989) 432-438, 1989.
Inspire Record 280159 DOI 10.17182/hepdata.29780

The excitation function of the reaction p p→ Λ Λ in the threshold region has been measured at LEAR. Sixteen measurements of the total cross section, in the energy range between 0.85 MeV below threshold and 4.05 MeV above, are presented. The shapes of the measured differential cross sections indicate a remarkably strong p-wave contribution even down to the reaction threshold. We also report here the measurement of significant polarizations in the threshold region; these are compared with previous higher-energy data.

3 data tables

Data to be supplied by authors.

No description provided.

No description provided.


THE ENERGY DEPENDENCE OF THE 90-degrees P P ELASTIC SCATTERING DEPOLARIZATION PARAMETER AND AMPLITUDES BETWEEN 0.9-GEV/C AND 1.5-GEV/C

Hollas, C.L. ; Cremans, D.J. ; Ransome, R.D. ; et al.
Phys.Lett.B 143 (1984) 343-346, 1984.
Inspire Record 208375 DOI 10.17182/hepdata.30531

The depolarization parameter D NN for pp elastic scattering at θ cm = 90 ° has been measured at twelve momenta between 0.9 and 1.5 GeV/ c . The moduli of the three transversity amplitudes T 1 , T 3 , and T 4 have been extracted from these data and from previous measurements of the differential cross section and spin correlation parameter A NN (90 °). Smooth energy dependence is found for all three amplitude moduli.

1 data table

Axis error includes +- 3/3 contribution (DUE TO UNCERTAINTIES IN THE TARGET ANALYSING POWER).


Measurement of n p Charge Exchange for Neutron Energies 150-MeV-800-MeV

Bonner, B.E. ; Simmons, J.E. ; Hollas, C.L. ; et al.
Phys.Rev.Lett. 41 (1978) 1200-1203, 1978.
Inspire Record 136397 DOI 10.17182/hepdata.20887

The s and u variations of the np charge-exchange (np→pn) cross section are measured to be relatively smooth and without structure at intermediate energies—in sharp contast to previous results.

1 data table

No description provided.


Precision Measurement of n p Charge Exchange Cross-Section at 647-MeV

Evans, M.L. ; Glass, G. ; Hiebert, J.C. ; et al.
Phys.Rev.Lett. 36 (1976) 497-500, 1976.
Inspire Record 112959 DOI 10.17182/hepdata.21088

The differential cross section for n−p elastic scattering in the angular region 145°<θc.m.<180° has been measured with high statistical accuracy using the monoenergetic neutron beam at Clinton P. Anderson Meson Physics Facility. The results differ significantly from previous Dubna and Princeton-Pennsylvania Accelerator results but agree reasonably well with recent Saclay data except at extreme backward angles.

1 data table

No description provided.


Neutron-Proton Differential-Cross-Section Measurements at 50 MeV

Montgomery, T.C. ; Brady, F.P. ; Bonner, B.E. ; et al.
Phys.Rev.Lett. 31 (1973) 640-643, 1973.
Inspire Record 945159 DOI 10.17182/hepdata.21337

The neutron-proton differential cross section at 50.0 MeV has been measured to a precision of ≃ 2% for backward-hemisphere c.m. angles and ≃ 3% for forward angles, both relative. The present data are not in good agreement with the previous n−p measurements near this energy. A preliminary phase-shift analysis using the present data produces more satisfactory results, particularly for the P11 phase shift.

2 data tables

No description provided.

No description provided.