Showing 10 of 378 results
Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.
Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.
We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.
Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. 6b: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for p-Pb collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. 7a: $<p_{\rm T}>$ as a function of $p_{\rm T}^{\rm trig}$ in Toward (left) and Away (right) regions after the subtraction of transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. 7b: $<p_{\rm T}>$ as a function of $p_{\rm T}^{\rm trig}$ in Toward (left) and Away (right) regions after the subtraction of transverse region for p-Pb collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. A1: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.15 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. A2: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 1.0 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. A3: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.15 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
Fig. A4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 1.0 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
The definitions of the four tetralepton signal regions. The regions are defined to target different $b$-jet multiplicities and flavour combinations of the non-Z leptons.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the Observed limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection. Background fit results for $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, DF}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, SF}$ and $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t} Z}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Background fit results for $\mathrm{CR}^{\mathrm{3-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{3-body}}_{VV}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{3-body}}_{VV}$, $\mathrm{VR(1)}^{\mathrm{3-body}}_{t\bar{t}}$ and $\mathrm{VR(2)}^{\mathrm{3-body}}_{t\bar{t}}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Background fit results for $\mathrm{CR}^{\mathrm{4-body}}_{t\bar{t}}$,$\mathrm{CR}^{\mathrm{4-body}}_{VV}$, $\mathrm{VR}^{\mathrm{4-body}}_{t\bar{t}}$, $VR^{4-body}_{VV}$ and $\mathrm{VR}^{\mathrm{4-body}}_{VV,lll}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the different-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the same-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Observed event yields and background fit results for the three-body selection SRs. The ''Others'' category contains contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Observed event yields and background fit results for SR$^{\mathrm{4-body}}_{\mathrm{Small}\,\Delta m}$ and SR$^{\mathrm{4-body}}_{\mathrm{Large}\,\Delta m}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm 1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta\ m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection. Background fit results for the $inclusive$ SRs. The Others category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=600~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the scalar signal model $t\bar{t} + \phi $ with $m(\phi)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the pseudoscalar signal model $t\bar{t} + a $ with $m(a)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=385~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=430~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=460~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=380~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=460~ GeV$ and $m(\tilde{\chi}^0_1)=415~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=320~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying $\tau$-lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing $b$-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying $\tau$-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into $t\tau$ and $b\nu$. Scalar leptoquarks decaying exclusively into $t\tau$ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into $t\tau$, the lower mass limit is 1.22 TeV.
Selection efficiency times acceptance summed over the seven signal regions as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$, assuming B = 1.
Summary of the observed and expected 95% CL upper limits on the cross section for $\mathrm{LQ}_{3}^{\mathrm{d}}$ pair production as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$ under the assumptions of B=1.
Summary of the observed and expected 95% CL upper limits on B as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$.
Cutflow of the preselection requirements (see Section 5) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in 1$\ell+\geq 1\tau$ channel (see Table 3) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in the 2$\ell$OS+$\geq 1\tau$ channel (see Table 4) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in the $2\ell$SS/$3\ell+\geq 1\tau$ channel (see Table 5) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. In this channel, two signal regions (SR-L and SR-H) are defined based on $p_{\mathrm{T}, 1}^{\tau}$, with SR-L and SR-H requiring $125< p_{\mathrm{T}, 1}^{\tau} < 225$ GeV and $p_{\mathrm{T}, 1}^{\tau}>225$ GeV, respectively. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
A search is performed for the electroweak pair production of charginos and associated production of a chargino and neutralino, each of which decays through an $R$-parity-violating coupling into a lepton and a $W$, $Z$, or Higgs boson. The trilepton invariant-mass spectrum is constructed from events with three or more leptons, targeting chargino decays that include an electron or muon and a leptonically decaying $Z$ boson. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV and collected by the ATLAS experiment between 2015 and 2018. The data are found to be consistent with predictions from the Standard Model. The results are interpreted as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model. Limits are also set on the production of charginos and neutralinos for a Minimal Supersymmetric Standard Model with an approximate $B$-$L$ symmetry. Charginos and neutralinos with masses between 100 GeV and 1100 GeV are excluded depending on the assumed decay branching fractions into a lepton (electron, muon, or $\tau$-lepton) plus a boson ($W$, $Z$, or Higgs).
This is the HEPData space for the trilepton resonance wino search, the full resolution figures can be found here https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-36/. The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' buttun above where they can then be found in the 'Common Resources' area. A detailed README for how to use the likelihoods is also included in this download. <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Obs.%20data%20vs%20SM%20bkg.%20exp.%20in%20CRs%20and%20VRs">Obs. data vs SM bkg. exp. in CRs and VRs</a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0%20">$\ell=(e, \mu, \tau)$, Obs_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up%20">$\ell=(e, \mu, \tau)$, Obs_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down%20">$\ell=(e, \mu, \tau)$, Obs_0_Down </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0%20">$\ell=(e, \mu, \tau)$, Exp_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up%20">$\ell=(e, \mu, \tau)$, Exp_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down%20">$\ell=(e, \mu, \tau)$, Exp_0_Down </a> <li><a href="?table=$\ell=e$,%20Obs_0%20">$\ell=e$, Obs_0 </a> <li><a href="?table=$\ell=e$,%20Obs_0_Up%20">$\ell=e$, Obs_0_Up </a> <li><a href="?table=$\ell=e$,%20Obs_0_Down%20">$\ell=e$, Obs_0_Down </a> <li><a href="?table=$\ell=e$,%20Exp_0%20">$\ell=e$, Exp_0 </a> <li><a href="?table=$\ell=e$,%20Exp_0_Up%20">$\ell=e$, Exp_0_Up </a> <li><a href="?table=$\ell=e$,%20Exp_0_Down%20">$\ell=e$, Exp_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Obs_0%20">$\ell=\mu$, Obs_0 </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Up%20">$\ell=\mu$, Obs_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Down%20">$\ell=\mu$, Obs_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Exp_0%20">$\ell=\mu$, Exp_0 </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Up%20">$\ell=\mu$, Exp_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Down%20">$\ell=\mu$, Exp_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Obs_0%20">$\ell=\tau$, Obs_0 </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Up%20">$\ell=\tau$, Obs_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Down%20">$\ell=\tau$, Obs_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Exp_0%20">$\ell=\tau$, Exp_0 </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Up%20">$\ell=\tau$, Exp_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Down%20">$\ell=\tau$, Exp_0_Down </a> </ul> <b>Triangle Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 600 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 600 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 800 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 800 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 900 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 900 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 600 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 600 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 800 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 800 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 900 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 900 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 200 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 200 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 200 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 200 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 300 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 300 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 300 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 300 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 400 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 400 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 400 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 400 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 500 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 500 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 500 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 500 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20upperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20expectedUpperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20upperLimit_XS_gr%20">$\ell=e$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20expectedUpperLimit_XS_gr%20">$\ell=e$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20upperLimit_XS_gr%20">$\ell=\mu$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20expectedUpperLimit_XS_gr%20">$\ell=\mu$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20upperLimit_XS_gr%20">$\ell=\tau$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20expectedUpperLimit_XS_gr%20">$\ell=\tau$, expectedUpperLimit_XS_gr </a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SRFR%20">Variable bin $m_{Z\ell}$ for SRFR </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR4$\ell$%20">Variable bin $m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR3$\ell$%20">Variable bin $m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$E^{miss}_{T}$%20">N-1 for SR3$\ell$, $E^{miss}_{T}$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$m^{min}_{T}$%20">N-1 for SR3$\ell$, $m^{min}_{T}$ </a> <li><a href="?table=N-1%20for%20SR4$\ell$,%20$E^{miss,SF}_{T}$%20">N-1 for SR4$\ell$, $E^{miss,SF}_{T}$ </a> <li><a href="?table=N-1%20for%20SRFR,%20$m^{asym}_{Z\ell}$%20">N-1 for SRFR, $m^{asym}_{Z\ell}$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SRFR%20">$m_{Z\ell}$ for SRFR </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR4$\ell$%20">$m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR3$\ell$%20">$m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=$L_{T}$%20for%20SR4$\ell$%20">$L_{T}$ for SR4$\ell$ </a> </ul> <b>Cut flows:</b> <ul display="inline-block"> <li><a href="?table=Yields%20Table">Yields Table</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SRFR">Model-Independent Results Table, SRFR</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR4$\ell$">Model-Independent Results Table, SR4$\ell$</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR3$\ell$">Model-Independent Results Table, SR3$\ell$</a> <li><a href="?table=Cutflow%20Table">Cutflow Table</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Acceptance in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Acceptance in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Acceptance in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Efficiency in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Efficiency in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Efficiency in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SRFR">Acceptance by Final State in SRFR</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR4$\ell$">Acceptance by Final State in SR4$\ell$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR3$\ell$">Acceptance by Final State in SR3$\ell$</a> </ul>
The observed data and the SM background expectation in the CRs (pre-fit) and VRs (post-fit). The ''Other'' category mostly consists of tW Z, ttW, and tZ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the fractional difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, computed following the profile likelihood method described in Ref. [arXiv: physics/0702156].
The observed yields and post-fit background expectations in SRFR, SR4$\ell$, and SR3$\ell$, shown inclusively and when the direct lepton from a $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ decay is required to be an electron or muon. The Other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. Uncertainties on the background expectation include combined statistical and systematic uncertainties. The individual uncertainties may be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
$E^{miss}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{min}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$E^{miss,SF}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{asym}_{Z\ell}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and pre-fit SM background expectation as a function of $L_{T}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. Only statistical uncertainties on the data and background expecation are shown.The bottom panel shows the ratio between the data and the background prediction
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Summary of event selections for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 200, 500, and 800 GeV, shown separately for the $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1}$ and $\tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ processes. The yields are normalized to a luminosity of $139 fb^{-1}$, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied at the end. After the initial selections, the yields are separated into SRFR, SR4$\ell$, and SR3$\ell$ regions, and then further separated into the $e$ and $\mu$ channels. Democratic branching fractions into bosons (W, Z, and Higgs) and leptons ($e$, $\mu$, and $\tau$ are used, with no branching fraction reweighting performed. The generator filters are discussed in detail in Section 3. The computing preselection requires at least two electrons or muons of uncalibrated pT > 9 GeV and |$\eta$| < 2.6.
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SRFR region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.
Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.
Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.
The ratios (μ) of the 95% C.L. upper limits on the combined s→ W<sup>±</sup>W<sup>∓</sup> and s→ ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.
The ratios (μ) of the 95% C.L. upper limits on the combined s→ W<sup>±</sup>W<sup>∓</sup> and s→ ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=1 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.
The ratios (μ) of the 95% C.L. upper limits on the combined s→ W<sup>±</sup>W<sup>∓</sup> and s→ ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=1.7 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s→ VV) for m<sub>Z'</sub>=0.5 TeV signal points. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s→ VV) process for m<sub>Z'</sub>=0.5 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s→ VV) for m<sub>Z'</sub>=1 TeV signal points. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s→ VV) process for m<sub>Z'</sub>=1 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s→ VV) for m<sub>Z'</sub>=1.7 TeV signal points. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s→ VV) process for m<sub>Z'</sub>=1.7 TeV, shown in dashed blue.
SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin and data overlaid with the maximum likelihood estimators set to the conditional values of the combined signal and control region fit. The hatched uncertainty band shown includes simulation statistics uncertainties, experimental systematic uncertainties, and V+jets theory modelling systematic uncertainties. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.
Cumulative efficiencies for the merged category for signal samples with m<sub>s</sub>=160 GeV (a), m<sub>s</sub>=235 GeV (b) and m<sub>s</sub>=310 GeV (c), each with m<sub>Z'</sub>=1 TeV. The dark Higgs candidate selection includes stringent jet substructure requirements and typically at most one candidate is present in signal events. Here, Δ φ<sub>jets<sub>1,2,3</sub> E<sub>T</sub><sup>miss</sup></sub> is the smallest azimuthal angle between the E<sub>T</sub><sup>miss</sup> and any of the three highest-p<sub>T</sub> (leading) small-R jets.
Cumulative efficiencies for the intermediate category for signal samples with m<sub>s</sub>=160 GeV (a), m<sub>s</sub>=235 GeV (b) and m<sub>s</sub>=310 GeV (c), each with m<sub>Z'</sub>=1 TeV. The TAR+Comb algorithm reconstructs the dark Higgs candidate from a TAR jet with m<sup>TAR</sup>>60 GeV that is supplemented by up to two additional small-R jets within ΔR<sub>cone</sub>=2.5 of the TAR jet. Here, Δ φ<sub>jets<sub>1,2,3</sub> E<sub>T</sub><sup>miss</sup></sub> is the smallest azimuthal angle between the E<sub>T</sub><sup>miss</sup> and any of the three highest-p<sub>T</sub> (leading) small-R jets. For details see text.
The product of acceptance and efficiency (A × ϵ), defined as the number of signal events satisfying the full set of selection criteria in the merged or intermediate signal regions, divided by the total number of generated signal events, for the s(W<sup>±</sup>W<sup>∓</sup>) dark Higgs signal points with dark Higgs boson mass m<sub>s</sub> and Z' boson mass m<sub>Z'</sub>.
The product of acceptance and efficiency (A × ϵ), defined as the number of signal events satisfying the full set of selection criteria in the merged or intermediate signal regions, divided by the total number of generated signal events, for the s(ZZ) dark Higgs signal points with dark Higgs boson mass m<sub>s</sub> and Z' boson mass m<sub>Z'</sub>.
A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of $b$-quarks ($b$-jets). The search uses 139 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a data-driven technique based on an extrapolation from events with low $b$-jet multiplicity to the high $b$-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stbchionly_obs">Stop to bottom quark and chargino exclusion contour (Obs.)</a> <li><a href="?table=stbchionly_exp">Stop to bottom quark and chargino exclusion contour (Exp.)</a> <li><a href="?table=stbchi_obs">Stop to higgsino LSP exclusion contour (Obs.)</a> <li><a href="?table=stbchi_exp">Stop to higgsino LSP exclusion contour (Exp.)</a> <li><a href="?table=sttN_obs">Stop to top quark and neutralino exclusion contour (Obs.)</a> <li><a href="?table=sttN_exp">Stop to top quark and neutralino exclusion contour (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stbchionly_xSecUL_obs">Obs Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_obs">Obs Xsection upper limit in higgsino LSP</a> <li><a href="?table=stbchionly_xSecUL_exp">Exp Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_exp">Exp Xsection upper limit in higgsino LSP</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_yields">SR_yields</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow">cutflow</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>stbchi_6je4be:</b> <a href="?table=stbchi_Acc_6je4be">stbchi_Acc_6je4be</a> <a href="?table=stbchi_Eff_6je4be">stbchi_Eff_6je4be</a> <li> <b>stbchi_7je4be:</b> <a href="?table=stbchi_Acc_7je4be">stbchi_Acc_7je4be</a> <a href="?table=stbchi_Eff_7je4be">stbchi_Eff_7je4be</a> <li> <b>stbchi_8je4be:</b> <a href="?table=stbchi_Acc_8je4be">stbchi_Acc_8je4be</a> <a href="?table=stbchi_Eff_8je4be">stbchi_Eff_8je4be</a> <li> <b>stbchi_9ji4be:</b> <a href="?table=stbchi_Acc_9ji4be">stbchi_Acc_9ji4be</a> <a href="?table=stbchi_Eff_9ji4be">stbchi_Eff_9ji4be</a> <li> <b>stbchi_6je5bi:</b> <a href="?table=stbchi_Acc_6je5bi">stbchi_Acc_6je5bi</a> <a href="?table=stbchi_Eff_6je5bi">stbchi_Eff_6je5bi</a> <li> <b>stbchi_7je5bi:</b> <a href="?table=stbchi_Acc_7je5bi">stbchi_Acc_7je5bi</a> <a href="?table=stbchi_Eff_7je5bi">stbchi_Eff_7je5bi</a> <li> <b>stbchi_8je5bi:</b> <a href="?table=stbchi_Acc_8je5bi">stbchi_Acc_8je5bi</a> <a href="?table=stbchi_Eff_8je5bi">stbchi_Eff_8je5bi</a> <li> <b>stbchi_9ji5bi:</b> <a href="?table=stbchi_Acc_9ji5bi">stbchi_Acc_9ji5bi</a> <a href="?table=stbchi_Eff_9ji5bi">stbchi_Eff_9ji5bi</a> <li> <b>stbchi_8ji5bi:</b> <a href="?table=stbchi_Acc_8ji5bi">stbchi_Acc_8ji5bi</a> <a href="?table=stbchi_Eff_8ji5bi">stbchi_Eff_8ji5bi</a> <li> <b>sttN_6je4be:</b> <a href="?table=sttN_Acc_6je4be">sttN_Acc_6je4be</a> <a href="?table=sttN_Eff_6je4be">sttN_Eff_6je4be</a> <li> <b>sttN_7je4be:</b> <a href="?table=sttN_Acc_7je4be">sttN_Acc_7je4be</a> <a href="?table=sttN_Eff_7je4be">sttN_Eff_7je4be</a> <li> <b>sttN_8je4be:</b> <a href="?table=sttN_Acc_8je4be">sttN_Acc_8je4be</a> <a href="?table=sttN_Eff_8je4be">sttN_Eff_8je4be</a> <li> <b>sttN_9ji4be:</b> <a href="?table=sttN_Acc_9ji4be">sttN_Acc_9ji4be</a> <a href="?table=sttN_Eff_9ji4be">sttN_Eff_9ji4be</a> <li> <b>sttN_6je5bi:</b> <a href="?table=sttN_Acc_6je5bi">sttN_Acc_6je5bi</a> <a href="?table=sttN_Eff_6je5bi">sttN_Eff_6je5bi</a> <li> <b>sttN_7je5bi:</b> <a href="?table=sttN_Acc_7je5bi">sttN_Acc_7je5bi</a> <a href="?table=sttN_Eff_7je5bi">sttN_Eff_7je5bi</a> <li> <b>sttN_8je5bi:</b> <a href="?table=sttN_Acc_8je5bi">sttN_Acc_8je5bi</a> <a href="?table=sttN_Eff_8je5bi">sttN_Eff_8je5bi</a> <li> <b>sttN_9ji5bi:</b> <a href="?table=sttN_Acc_9ji5bi">sttN_Acc_9ji5bi</a> <a href="?table=sttN_Eff_9ji5bi">sttN_Eff_9ji5bi</a> <li> <b>sttN_8ji5bi:</b> <a href="?table=sttN_Acc_8ji5bi">sttN_Acc_8ji5bi</a> <a href="?table=sttN_Eff_8ji5bi">sttN_Eff_8ji5bi</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected background and observed number of events in different jet and $b$-tag multiplicity bins.
Cut flow for a model of top-squark pair production with the top squark decaying to a $b$-quark and a chargino. The chargino decays through the non-zero RPV coupling $\lambda^{''}_{323}$ via a virtual top squark to $bbs$ quark triplets ($m_{\tilde{t}}$ = 800 GeV, $m_{\tilde{\chi}^{\pm}_{1}}$ = 750 GeV). The multijet trigger consists of four jets satisfying $p_{\text{T}}\geq(100)120$ GeV for the 2015-2016 (2017-2018) data period. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed. The numbers in $N_{\text{weighted}}$ are normalized by the integrated luminosity of 139 fb$^{-1}$.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.
The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.