Search for a new heavy scalar particle decaying into a Higgs boson and a new scalar singlet in final states with one or two light leptons and a pair of $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 10 (2023) 009, 2023.
Inspire Record 2679289 DOI 10.17182/hepdata.141076

A search for a new heavy scalar particle $X$ decaying into a Standard Model (SM) Higgs boson and a new singlet scalar particle $S$ is presented. The search uses a proton-proton ($pp$) collision data sample with an integrated luminosity of 140 fb$^{-1}$ recorded at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored in $X$ mass ranging from 500 to 1500 GeV, with the corresponding $S$ mass in the range 200-500 GeV. The search selects events with two hadronically decaying $\tau$-lepton candidates from $H\to \tau^+\tau^-$ decays and one or two light leptons ($\ell=e,\,\mu$) from $S\to VV$ ($V = W,\,Z$) decays while the remaining $V$ boson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-section $\sigma(pp\to X\to SH)$ assuming the same SM-Higgs boson-like decay branching ratios for the $S\to VV$ decay. Upper limits on the visible cross-sections $\sigma(pp\to X\to SH \to WW\tau\tau)$ and $\sigma(pp\to X\to SH \to ZZ\tau\tau)$ are also set in the ranges 3-26 fb and 6-33 fb, respectively.

6 data tables

Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH)$ obtained from $WW1\ell2\tau_{\mathrm{had}}$, $WW2\ell2\tau_{\mathrm{had}}$, $ZZ2\ell2\tau_{\mathrm{had}}$, and their combination, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV.

Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to WW\tau\tau)$ obtained from the combination of $WW1\ell2\tau_{\mathrm{had}}$ and $WW2\ell2\tau_{\mathrm{had}}$ channels, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to WW\tau\tau)$ are also compared.

Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ obtained from $ZZ2\ell2\tau_{\mathrm{had}}$ channel, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ are also compared.

More…

Search for dark photons in rare $Z$ boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 131 (2023) 251801, 2023.
Inspire Record 2668340 DOI 10.17182/hepdata.140310

A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the Standard Model $Z$ boson is presented, using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark Higgs boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon, $\alpha_{D}\varepsilon^2$, in the dark photon mass range of $[5, 40]$ GeV except for the $\Upsilon$ mass window $[8.8, 11.1]$ GeV. This search explores new parameter space not previously excluded by other experiments.

30 data tables

Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 20 GeV

Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 30 GeV

Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 40 GeV

More…

Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Observation of $WZ\gamma$ production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021802, 2024.
Inspire Record 2663046 DOI 10.17182/hepdata.144507

This Letter reports the observation of $WZ\gamma$ production and a measurement of its cross-section using 140.1 $\pm$ 1.2 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The $WZ\gamma$ production cross-section, with both the $W$ and $Z$ bosons decaying leptonically, $pp \rightarrow WZ\gamma \rightarrow {\ell'}^{\pm}\nu\ell^{+}\ell^{-}\gamma$ ($\ell^{(')} = e, \mu$), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross-section is found to be 2.01 $\pm$ 0.30 (stat.) $\pm$ 0.16 (syst) fb. The corresponding Standard Model predicted cross-section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50 $\pm$ 0.06 fb. The observed significance of the $WZ\gamma$ signal is 6.3$\sigma$, compared with an expected significance of 5.0$\sigma$.

4 data tables

Events in bins of the photon $p_{\mathrm{T}}^{\gamma}$ in the SR.

Events in bins of the $p_{\mathrm{T}}^{\ell_{1}}$ in the SR.

Events in bins of the $m(\ell\ell)$ in the SR.

More…

Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 824, 2023.
Inspire Record 2662303 DOI 10.17182/hepdata.141494

A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.

2 data tables

Observed and expected 95% CL upper limits on the heavy Majorana neutrino mixing element $\vert V_{\mu N} \vert^{2}$ as a function of $m_N$ in the Phenomenological Type-I Seesaw model.

Cutflow for a selection of signal samples used in this analysis. The flavour-aligned scenario (in which $\vert V_{\mu N} \vert^{2}=1$) is considered for heavy Majorana neutrino samples. The event yields include all correction factors applied to simulation, and is normalised to 140 fb$^{-1}$. The `Skim' selection requires 2 baseline muons and 2 jets satisfying the object definitions described in Section 3 and $m_{jj} > 150$ GeV. Uncertainties are statistical only.


Search for dark matter produced in association with a Higgs boson decaying to tau leptons at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 09 (2023) 189, 2023.
Inspire Record 2661503 DOI 10.17182/hepdata.140433

A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.

70 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>CLs and CLs+b values</b> <ul> <li><a href=?table=CLs_tanb_mA_grid_Expected>Expected CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_tanb_mA_grid_Observed>Observed CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Expected>Expected CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Observed>Observed CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Expected>Expected CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Observed>Observed CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLsplusb_tanb_mA_grid>CLs+b values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_HighmA_SR>CLs+b values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_LowmA_SR>CLs+b values in mA vs ma grid, Low mA SR</a> </ul> <b>Cutflow tables</b> <ul> <li><a href=?table=Cutflows_ggf_LowmA_SR>Low mA SR, ggF production</a> <li><a href=?table=Cutflows_ggf_HighmA_SR>High mA SR, ggF production</a> <li><a href=?table=Cutflows_bb_LowmA_SR>Low mA SR, bb production</a> <li><a href=?table=Cutflows_bb_HighmA_SR>High mA SR, bb production</a> </ul> <b>Kinematic Distributions</b> <ul> <li><a href=?table=KinDist_LowmA_SR>Low mA SR mTtau1+mTtau2 distribution</a> <li><a href=?table=KinDist_HighmA_SR>High mA SR mTtau1+mTtau2 distribution</a> </ul> <b>Limits</b> <ul> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAma_grid>Expected 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAma_grid>Observed 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAma_grid>Expected +-1 sigma 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAtanB_grid>Expected 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAtanB_grid>Observed 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAtanB_grid>Expected +-1 sigma 95% CL exclusion limit in tanB grid</a> </ul> <b>Acceptance and efficiency</b> <ul> <li><a href=?table=table1>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table2>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table3>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table4>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table5>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table6>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table7>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table8>Acceptance, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table9>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table10>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table11>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table12>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table13>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table14>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table15>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table16>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table17>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table18>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table19>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table20>Acceptance, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table21>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table22>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table23>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table24>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> <li><a href=?table=table25>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table26>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table27>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table28>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table29>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table30>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table31>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table32>Efficiency, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table33>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table34>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table35>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table36>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table37>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table38>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table39>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table40>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table41>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table42>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table43>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table44>Efficiency, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table45>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table46>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table47>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table48>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> </ul>

Expected CLs values in the Low mA SR, mA vs tanB signal grid.

Observed CLs values in the Low mA SR, mA vs tanB signal grid.

More…

Search for direct production of winos and higgsinos in events with two same-charge leptons or three leptons in $pp$ collision data at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2023) 150, 2023.
Inspire Record 2660233 DOI 10.17182/hepdata.134245

A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

70 data tables

Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

More…

Search for a new pseudoscalar decaying into a pair of muons in events with a top-quark pair at $\sqrt{s} = 13$~TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 092007, 2023.
Inspire Record 2654723 DOI 10.17182/hepdata.139987

A search for a new pseudoscalar $a$-boson produced in events with a top-quark pair, where the $a$-boson decays into a pair of muons, is performed using $\sqrt{s} = 13$ TeV $pp$ collision data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of $139\, \mathrm{fb}^{-1}$. The search targets the final state where only one top quark decays to an electron or muon, resulting in a signature with three leptons $e\mu\mu$ and $\mu\mu\mu$. No significant excess of events above the Standard Model expectation is observed and upper limits are set on two signal models: $pp \rightarrow t\bar{t}a$ and $pp \rightarrow t\bar{t}$ with $t \rightarrow H^\pm b$, $H^\pm \rightarrow W^\pm a$, where $a\rightarrow\mu\mu$, in the mass ranges $15$ GeV $ < m_a < 72$ GeV and $120$ GeV $ \leq m_{H^{\pm}} \leq 160$ GeV.

24 data tables

Comparison between data and expected background for the on-$Z$-boson control region in the $e\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.

Comparison between data and expected background for the on-$Z$boson control region in the $\mu\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.

Di-muon mass distribution for the $e\mu\mu$ signal region for data and expected background. The expected signal distribution for $m_a = 35$ GeV is shown assuming $\sigma(t\bar{t}a)\times \text{Br}(a\rightarrow\mu\mu) = 4$ fb. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.

More…

Search in diphoton and dielectron final states for displaced production of Higgs or $Z$ bosons with the ATLAS detector in $\sqrt{s} = 13$ TeV $pp$ collisions

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 012012, 2023.
Inspire Record 2654099 DOI 10.17182/hepdata.135829

A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.

45 data tables

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

More…

Search for high-mass $W\gamma$ and $Z\gamma$ resonances using hadronic W/Z boson decays from 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 125, 2023.
Inspire Record 2653725 DOI 10.17182/hepdata.136027

A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s} = 13$ TeV proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the $W$ and $Z$ bosons because of their large branching fractions. The decay products of the high-momentum $W/Z$ bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.

24 data tables

The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 1000$ GeV. The decays simulated are for the production models $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.

The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 4000$ GeV. The decays simulated are for the production models $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.

Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-0 $gg\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.

More…