The reaction π − p→ π + π − n has been measured in a high-statistics experiment on a transversely polarized proton target at 17.2 GeV, and unexpectedly large nucleon polarization effects have been observed. Combining the results of this experiment with a measurement on a hydrogen target allows a model-independent partial-wave analysis in terms of the “nucleon transversity” amplitudes. Unique or at most twofold ambiguous solutions are obtained. In particular we find a high lower limit ( ⪆30% ) of the spin non-flip unnatural exchange amplitudes at low | t |. These amplitudes, interpreted as being due to the exchange of an object with the quantum numbers of the A 1 , have been assumed to be absent in previous analyses. In checking the consequences of this finding on the old results, we test the validity of the rank-two assumotions for the density matrix. We find a small but significant deviation, which shows the need for a new phase-shift analysis including the A 1 exchange contribution.
MASS DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS SCALED TO 100 PCT POLARIZED PROTONS.
T DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS IN THE RHO REGION SCALED TO 100 PCT POLARIZED PROTONS.
Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
No description provided.
No description provided.
We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.
.
.
Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.
No description provided.
No description provided.
SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.
We observe evidence for a secon narrow resonance in the reation e + e − → hadrons at √s around 10 GeV using the DASP detector at the DORIS storage ring. The mass of the resonance is (10.01 ± 0.02) GeV; its width is in agreement with the storage ring resolution of ≈ 9 MeV. From the integrated cross section, an electronic width of Λ ee = (0.35 ± 0.14) KeV is derived.
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
Approximately 350 A 2 + events have been observed in the reaction π + p → K + K S 0 p ( K S 0 → π + π − ) at an incident π + laboratory momentum of 12.7 GeV/ c . The events are distributed over a range of four-momentum transfer squared 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 and K + K S 0 mass 1.11 ⩽ m K + K S 0 ⩽ 1.51 GeV . A Breit-Wigner fit to the mass spectrum yields a mass for the A 2 + , m A 2 + = 1.324 ± 0.005 GeV, and a width Γ 0 = 0.110 ± 0.018 GeV. We find a cross section σ ( π + p → A 2 + p) = 1.71 ± 0.30 μb referring to the above-mentioned mass and t range and A 2 + → K + K S O with K S 0 → π + π − . The spin-space density matrix in the Gottfried-Jackson frame is practically saturated by ϱ 11 ⋍ ϱ 1−1 = 1 2 suggesting natural parity exchanges only. There is a forward dip in the angular distribution consistent with dominance of s -channel net helicity flip amplitudes and ϱ and f Regge exchanges suffice to describe adequately our differential cross sections.
SUBTRACTED BACKGROUND IS PHASE SPACE. FITTED D(SIG)/DT SLOPE IS 9.5 +- 0.9 GEV**-2.
SUBTRACTED BACKGROUND IS AN S-WAVE WITH SLOPE OF 8 GEV**-2. FITTED D(SIG)/DT SLOPE IS 6.9 +- 0.6 GEV**-2.
FROM D(SIG)/DT. ERROR INCLUDES 15 PCT SCALE ERROR ADDED QUADRATICALLY.
This paper presents results of an experiment on hadron production in deep-inelastic electron scattering. Good agreement with the predictions of the quark-parton model is found. The Fragmentation functions for u and d quarks into pions are determined, and comparison is made with other deep-inelastic processes and with recent quark jet parametrizations.
No description provided.
We report the results of an experiment which measured n-p elastic scattering differential cross sections over a range in -t from 0.15 to ~ 3.6 (Gev/c)2 for incident neutron momenta from 70 to 400 GeV/c. We find the logarithmic slope parameter, evaluated at -t = 0.2 (GeV/c)2, to be consistent with existing proton-proton parameterizations. The data exhibit a dip in the cross section near -t 1.4 (Gev/c)2 for incident neutron momenta above 200 Gev/c. For neutron momenta less than 280 GeV/c, the neutron-proton cross sections are found to be higher than existing proton-proton data in the range 0.7 ~ -t ~ 1.3 (Gev/c)2 which is in contradic- tion to most Regge predictions.
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.