Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-18-026, 2024.
Inspire Record 2769284 DOI 10.17182/hepdata.147309

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell=$ $\mu$,$\tau$) channels.

6 data tables

Post-fit BDT distributions in the WH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines WH20 GeV, WH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Post-fit BDT distributions in the ZH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines ZH20 GeV and ZH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Model independent 95% CL upper limits on σ(VH) B(H → aa → bbbb)/σ(SM) for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where “a” is a new pseudoscalar particle decaying through a → bb, and σ(SM) is the SM Higgs boson production cross section.

More…

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

30 data tables

Expected profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Observed profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Expected profiled likelihood on $f_{\Lambda1}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

More…

Measurement of simplified template cross sections of the Higgs boson produced in association with W or Z bosons in the H $\to$$\mathrm{b\bar{b}}$ decay channel in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIG-20-001, 2023.
Inspire Record 2736546 DOI 10.17182/hepdata.145636

Differential cross sections are measured for the standard model Higgs boson produced in association with vector bosons (W, Z) and decaying to a pair of b quarks. Measurements are performed within the framework of the simplified template cross sections. The analysis relies on the leptonic decays of the W and Z bosons, resulting in final states with 0, 1, or 2 electrons or muons. The Higgs boson candidates are either reconstructed from pairs of resolved b-tagged jets, or from single large distance parameter jets containing the particles arising from two b quarks. Proton-proton collision data at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2016-2018 and corresponding to a total integrated luminosity of 138 fb$^{-1}$, are analyzed. The inclusive signal strength, defined as the product of the observed production cross section and branching fraction relative to the standard model expectation, combining all analysis categories, is found to be $\mu$ = 1.15$^{+0.22}_{-0.20}$. This corresponds to an observed (expected) significance of 6.3 (5.6) standard deviations.

3 data tables

Measured product of cross section and branching fraction as well as signal strength, defined as the ratio of the observed signal cross section to the Standard Model expectation, in the V(leptonic)H STXS process scheme from the analysis of the 2016, 2017 and 2018 data. If the observed signal strength for a given STXS bin is negative, no uncertainty is reported for the associated bin.

Signal strength per signal process. All results combine the 2016, 2017 and 2018 data-taking years.

Signal strength per analysis channels. All results combine the 2016, 2017 and 2018 data-taking years.


Search for new physics using effective field theory in 13 TeV pp collision events that contain a top quark pair and a boosted Z or Higgs boson

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 032008, 2023.
Inspire Record 2142913 DOI 10.17182/hepdata.127700

A data sample containing top quark pairs ($\mathrm{t\bar{t}}$) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions produced at a center-of-mass energy of 13 TeV at the LHC and collected by the CMS experiment. Selected events contain a single lepton and hadronic jets, including two identified with the decay of bottom quarks, plus an additional large-radius jet with high transverse momentum identified as a Z or Higgs boson decaying to a bottom quark pair. Machine learning techniques are employed to discriminate between $\mathrm{t\bar{t}}$Z or $\mathrm{t\bar{t}}$H events and events from background processes, which are dominated by $\mathrm{t\bar{t}}$ + jets production. No indications of new physics are observed. The signal strengths of boosted $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H production are measured, and upper limits are placed on the $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H differential cross sections as functions of the Z or Higgs boson transverse momentum. The effects of new physics are probed using a framework in which the standard model is considered to be the low-energy effective field theory of a higher energy scale theory. Eight possible dimension-six operators are added to the standard model Lagrangian and their corresponding coefficients are constrained via fits to the data.

20 data tables

Negative log-likelihood difference in $\mu_{\text{ttH}}, \mu_{\text{ttZ}}$ for a Z or Higgs boson with a simulated pT $> 200$GeV

Negative log-likelihood difference in $\text{c}_{\text{t}\varphi}$ where the other Wilson coefficients are fixed to 0.

Negative log-likelihood difference in $\text{c}_{\varphi\text{Q}}^{-}$ where the other Wilson coefficients are fixed to 0.

More…

Searches for additional Higgs bosons and for vector leptoquarks in $\tau\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 073, 2023.
Inspire Record 2132368 DOI 10.17182/hepdata.128147

Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.

313 data tables

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.

More…

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

30 data tables

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The scalar $p_{T}$ sum, denoted as $H_{T}$, of the two reconstructed $\ell$ and all small-radius jets.

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The angular separation $\Delta R$ between the two $\ell$.

Distribution of an input to the BDT classifier in the $3\ell$ category: The angular separation between $\ell_{3}$ and the nearest small-radius jet (j). The $\ell_{3}$ in is defined as the $\ell$ that is not part of the opposite-sign $\ell\ell$ pair of lowest mass.

More…

Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 688, 2021.
Inspire Record 1846987 DOI 10.17182/hepdata.101374

A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits are derived on the production of a narrow heavy resonance Z', and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.

21 data tables

The product of signal acceptance and efficiency in the 0l categories for the signal produced via qqbar annihilation.

The product of signal acceptance and efficiency in the 2l categories for the signal produced via qqbar annihilation.

The product of signal acceptance and efficiency in the 0l categories for the signal produced via vector boson fusion.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2021) 003, 2021.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

5 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengthes are given. For the regularized case the uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The regularization estimated bias (bias) is also given. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The correlation matrix for the ptH measurements, both for the unregularized and regularized fits. The last bin is inclusive.

The fiducial differential signal strength and cross section in each njet bin. The uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135087, 2020.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> tautautautau) as a function of m(a) obtained from the 13 TeV data, where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and (a) denotes a light Higgs-like state.


Search for resonances decaying to a pair of Higgs bosons in the $\mathrm{b\overline{b}q\overline{q}'}\ell\nu$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2019) 125, 2019.
Inspire Record 1728701 DOI 10.17182/hepdata.88898

A search for new massive particles decaying into a pair of Higgs bosons in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed for resonances with a mass between 0.8 and 3.5 TeV using events in which one Higgs boson decays into a bottom quark pair and the other decays into two W bosons that subsequently decay into a lepton, a neutrino, and a quark pair. The Higgs boson decays are reconstructed with techniques that identify final state quarks as substructure within boosted jets. The data are consistent with standard model expectations. Exclusion limits are placed on the product of the cross section and branching fraction for generic spin-0 and spin-2 massive resonances. The results are interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. These are the best results to date from searches for an HH resonance decaying to this final state, and they are comparable to the results from searches in other channels for resonances with masses below 1.5 TeV.

2 data tables

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.