Result of cross section measurements for the reaction π − p → π − π + n are presented. They cover a range of incident pion momenta between 295 and 450 MeV/ c . It is the first time that the cross section has been measured so close to threshold. The experiment was performed with Omicron, a large-solid-angle spectrometer, which enables a measurement of the full set of kinematic variables. In the region of overlap there is a good agreement with other experiments. The extracted value for the chiral-symmetry-breaking parameter ξ is seen to be largely extrapolition dependent but the measured value of -0.5±0.8 leaves Weinberg's prediction of ξ =0 the only remaining choice.
No description provided.
The e + e − → ηπ + π − reaction has been measured in the center of mass energy interval 1350–2400 MeV by the magnetic detector DM2 at the Orsay storage ring DCI. Under the hypothesis of only one large resonance the cross section is not fit in a satisfactory way. The branching ratio τ − → η − π 0 ν τ =(0.13 ± 0.02)% is deduced via CVC from the above measurement.
No description provided.
Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.
No description provided.
The ratio of π - to π + electroproduction cross sections from deuterium has been measured in the resonance region, at a four-momentum transfer squared close to −1.0 (GeV/ c ) 2 . Results in the forward direction are presented and a comparison is made with predictions based on SU(6) W and the Melosh transformation.
No description provided.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
We have identified 262 doubly tagged two-photon events. A subset of the data shows an enhancement of 21 events in the inclusive two-photon mass squared distribution between 0.8 and 2.2 GeV 2 . If these events result from spin 2 resonance production then Γ γγ = 9.5 ± 3.9 ± 2.4 keV (statistical and systematic). From another subset of 58 events in which the final state could be classified we determine the two-photon hadron to muon cross section ratio R γγ = 1.1 ± 0.3 ± 0.3.
ELECTRON BEAM ENERGIES OF 3.0 AND 3.6 GEV.
At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.
No description provided.
The differential cross section for the reaction γp → π 0 p at forward angles has been measured in the energy region between 350 MeV and 1175 MeV. A phenomenological multiple analysis was carried out on the present data together with other data.
No description provided.
No description provided.
No description provided.