The production of Δ ++ baryons has been measured using 3.5 million hadronic Z 0 decays collected with the OPAL detector at LEP. The production rate and fragmentation function are presented. A total of 0.22 ± 0.04 ± 0.04 Δ ++ + ( Δ ) −− per hadronic Z 0 decay is observed. The fragmentation function is found to be softer than that predicted by the JETSET and HERWIG Monte Carlo event generators. With this measurement of Δ ++ production, at least one baryon of each strangeness level in the lightest baryon decuplet has now been measured at LEP.
No description provided.
Rates for gamma + 1 jet.
Rates for gamma + 2 jet.
Rates for gamma + 3 jet.
A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
Data on the inclusive production of the neutral vector mesonsρ 0(770),ω(782), K*0(892), andφ(1020) in hadronic Z decays recorded with the ALEPH detector at LEP are presented and compared to Monte Carlo model predictions. Bose-Einstein effects are found to be important in extracting a reliable value for theρ 0 production rate. An averageρ 0 multiplicity of 1.45±0.21 per event is obtained. Theω is detected via its three pion decay modeω→π + π − π 0 and has a total rate of 1.07±0.14 per event. The multiplicity of the K*0 is 0.83±0.09, whilst that of theφ is 0.122±0.009, both measured using their charged decay modes. The measurements provide information on the relative production rates of vector and pseudoscalar mesons, as well as on the relative probabilities for the production of hadrons containing u, d, and s quarks.
No description provided.
Average multiplicity per hadronic event. Extrapolation to the full X range.
No description provided.
We present a limit on $\nu_\mu(\overline{\nu}_\mu)\to\nu_\tau(\overline{\nu}_\tau)$ oscillations based on a study of inclusive $\nu N$ interactions performed using the CCFR massive coarse grained detector in the FNAL Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of $\nu_\mu N$ versus $\nu_\tau N$ charged current interactions. The $\nu_\mu$ energies ranged from $30$ to $500$GeV with a mean of $140$GeV. The minimum and maximum $\nu_\mu$ flight lengths are $0.9$km and $1.4$km respectively. The lowest $90\%$ confidence upper limit in $\sin~22\alpha$ of $2.7\times 10~{-3}$ is obtained at $\Delta m~2\sim50$eV$~2$. This result is the most stringent limit to date for $25<\Delta m~2<90$eV$~2$.
ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUTAU oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.
ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).
The orthopositronium decay rate is measured with an entirely new method, in which the pickoff annihilation rate is directly measured as a function of time with a high-resolution germanium detector. The decay rate can be determined without the ambiguities of the thermalization nor of the extrapolation, which might have been sources of the main systematic errors in all the previous experiments. Two independent measurements are carried out with two different types of SiO 2 powder, resulting in decay rate values consistent with each other. The combined result is λ 0 = 7.0398 ± 0.0025 (stat.) ± 0.0015 (sys.) μs −1 , which is consistent with the QED prediction, and differs by 2.9–4.1Φ from three recent measurements.
No description provided.
Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction $ep \rightarrow jet \; + \; X$ with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies $E_T~{jet}>8$GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale $\sim (E_T~{jet})~2$. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30\% and 80\% of the momentum of the pomeron carried by partons is due to hard gluons.
No description provided.
No description provided.
The production of transverse energy in deep inelastic scattering is measured as a function of the kinematic variables $x$ and $Q~2$ using the H1 detector at the ep collider HERA. The results are compared to the different predictions based upon two alternative QCD evolution equations, namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations. In a pseudorapidity interval which is central in the hadronic centre of mass system between the current and the proton remnant fragmentation region the produced transverse energy increases with decreasing $x$ for constant $Q~2$. Such a behaviour can be explained with a QCD calculation based upon the BFKL ansatz. The rate of forward jets, proposed as a signature for BFKL dynamics, has been measured.
No description provided.
No description provided.
No description provided.