Date

Measurement of J/$\psi$ (3100) Photoproduction in Deuterium at 55-GeV

Nash, T. ; Belousov, A. ; Govorkov, B. ; et al.
Phys.Rev.Lett. 36 (1976) 1233, 1976.
Inspire Record 108460 DOI 10.17182/hepdata.12555

We report the result of a brief experiment to measure the cross section for photoproduction of Jψ(3100). At a mean energy of 55 GeV we find this cross section per nucleon to be 37.5 ± 8.2 (statistical) ± 4 (systematic) nb. The result establishes the previously indicated rise in Jψ photoproduction on protons above 20 GeV and suggests that the rise has occurred by 55 GeV.

0 data tables match query

Total Hadronic Photoabsorption Cross-Sections on Hydrogen and Complex Nuclei from 4-GeV to 18-GeV

Caldwell, David O. ; Elings, V.B. ; Hesse, W.P. ; et al.
Phys.Rev.D 7 (1973) 1362, 1973.
Inspire Record 83727 DOI 10.17182/hepdata.22181

Final total cross sections are given for a counter experiment at SLAC on hadronic photon absorption in hydrogen, deuterium, carbon, copper, and lead at incident energies from 3.7 to 18.3 GeV. Some of the nucleon cross sections have been revised and the C, Cu, and Pb data from 3.7 to 7.4 GeV have not been reported previously. The cross sections for complex nuclei vary approximately as A0.9 in our energy range, indicating that the photon interacts, at least partially, as a strongly interacting particle. The energy dependences of the proton and neutron cross sections are also similar to those of hadron-nucleon cross sections and hence may be fitted by a typical Regge parametrization, yielding σT(γp)=(98.7±3.6)+(65.0±10.1)ν−12 μb and σT(γn)=(103.4±6.7)+(33.1±19.4)ν−12 μb, where ν is the photon energy in GeV. These extrapolate to the same value at infinite energy, consistent with Pomeranchukon exchange, and the energy-dependent part yields an isovector-to-isoscalar-exchange ratio of 0.18 ± 0.06. While these observations are qualitatively consistent with vector meson dominance, quantitatively vector dominance fails in relating our results to ρ photo-production on hydrogen or to experiments determining the ρ-nucleon cross section. Vector dominance cannot be rescued by assuming that the ρ-photon coupling constant depends on the photon mass. Instead, an additional short-range interaction is apparently required, possibly due to a heavy (≳ 2 GeV / c2) vector meson or to a bare-photon interaction. The additional interaction accounts for approximately 20% of the total photoabsorption cross section.

0 data tables match query

Measurement of the charged multiplicities in b, c and light quark events from Z0 decays.

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Lett.B 386 (1996) 475-485, 1996.
Inspire Record 422172 DOI 10.17182/hepdata.28349

Average charged multiplicities have been measured separately in $b$, $c$ and light quark ($u,d,s$) events from $Z~0$ decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of $b$ and light quark events, and reconstructed charmed mesons were used to select $c$ quark events. We measured the charged multiplicities: $\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.})$, $\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ~{+0.41}_{-0.36}(\rm{syst.})$ $\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ~{+0.38}_{-0.37}(\rm{syst.})$, from which we derived the differences between the total average charged multiplicities of $c$ or $b$ quark events and light quark events: $\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})~{+0.36}_{-0.30}(\rm{syst.})$ and $\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})~{+0.30}_{-0.29}(\rm{syst.})$. We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.

0 data tables match query

OBSERVATION OF SCALING OF THE PHOTON STRUCTURE FUNCTION F2 (gamma) AT LOW Q**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 58 (1987) 97, 1987.
Inspire Record 233595 DOI 10.17182/hepdata.20136

The structure function F2γ for a quasireal photon has been measured in the reaction ee→eeX for Q2 in the range 0.2<Q2<7 GeV2, by use of 9200 multihadron events obtained with the TPC/Two-Gamma detector at the SLAC storage ring PEP. The data have been corrected for detector effects by a regularized unfolding procedure and are presented as F2γ(x,Q2). The structure function shows scaling in the region 0.3<Q2<1.6 GeV2, x<0.3, and rises for higher Q2 and x>0.1. Below Q2=0.3 GeV2, scaling breaks down in accordance with the finite cross-section bound for real photons.

0 data tables match query

A Test of the flavor independence of strong interactions

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 53 (1996) 2271-2275, 1996.
Inspire Record 382002 DOI 10.17182/hepdata.22341

We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$

0 data tables match query

A MEASUREMENT OF THE TOTAL HADRONIC CROSS-SECTION IN TAGGED gamma gamma REACTIONS

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 41 (1990) 2667, 1990.
Inspire Record 281351 DOI 10.17182/hepdata.22991

We present a measurement of the total cross section for γγ→hadrons, with one photon quasireal and the other a spacelike photon of mass squared −Q2. Results are presented as a function of Q2 and the γγ center-of-mass energy W, with the Q2 range extending from 0.2 to 60 GeV2, and W in the range from 2 to 10 GeV. The data were taken with the TPC/Two-Gamma facility at the SLAC e+e− storage ring PEP, which was operated at a beam energy of 14.5 GeV. The cross section exhibits a gentle falloff with increasing W. Its Q2 dependence is shown to be well described by an incoherent sum of vector-meson and pointlike scattering over most of the observed W range. Agreement at high Q2 is improved if a minimum-pT cutoff (motivated by QCD) is imposed on the pointlike contribution.

0 data tables match query

Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

0 data tables match query

An improved measurement of the left-right Z0 cross-section asymmetry

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Rev.Lett. 78 (1997) 2075-2079, 1997.
Inspire Record 426122 DOI 10.17182/hepdata.19583

We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).

0 data tables match query

First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

0 data tables match query

Precise Measurement of the Left-Right Cross Section Asymmetry in $Z$ Boson Production by $\ee$ Collisions

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.Lett. 73 (1994) 25-29, 1994.
Inspire Record 373007 DOI 10.17182/hepdata.19681

We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}

0 data tables match query