Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

9 data tables match query

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables match query

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 09 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

61 data tables match query

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 120, 150, 200, 250 and 300 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 400, 500, 650, 800 and 1000 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 1200, 1500, 2000, 3000 and 5000 GeV^2.

More…

Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables match query

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Measurement of beauty production at HERA using events with muons and jets

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 41 (2005) 453-467, 2005.
Inspire Record 676166 DOI 10.17182/hepdata.110966

A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.

10 data tables match query

Muons and jets from beauty photoproduction, pseudorapidity.

Muons and jets from beauty photoproduction, muon transverse momentum.

Muons and jets from beauty photoproduction, leading jet transverse momentum

More…

Photo-production of psi(2S) mesons at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 421 (1998) 385-394, 1998.
Inspire Record 451266 DOI 10.17182/hepdata.44434

Quasi-elastic (z >0.95) photo-production of psi' mesons has been observed at HERA for photon-proton centre-of-mass energies in the range 40 to 160 GeV. The psi' mesons were identified through their decays to l+l- and to J/psi pi+ pi-, where the J/psi subsequently decays to l+l-, the lepton l being either a muon or an electron. The cross-section for quasi-elastic photoproduction was measured to be [18.0 +- 2.8 (stat) +- 3.0(syst)] nb at a photon-proton centre-of-mass energy of 80 GeV. The ratio of the psi' to J/psi quasi-elastic cross-sections is 0.150 +- 0.027 (stat) +- 0.022 (syst).

9 data tables match query

Overall value for photoproduction cross section combining the different decay modes and data sample.. 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.

Combined cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- and PSI(3685) --> J/PSI(1S) < MU+ MU- > PI+ PI- modes using both the 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.

Cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- mode.

More…

Inclusive D0 and D*+- production in neutral current deep inelastic e p scattering at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 72 (1996) 593-605, 1996.
Inspire Record 421105 DOI 10.17182/hepdata.44713

First results on inclusive D0 and D* production in deep inelastic $ep$ scattering are reported using data collected by the H1 experiment at HERA in 1994. Differential cross sections are presented for both channels and are found to agree well with QCD predictions based on the boson gluon fusion process. A charm production cross section for 10GeV$~2\le Q~2\le100$GeV$~2$ and $0.01\le y\le0.7$ of $\sigma\left(ep\rightarrow c\overlinecX\right) = (17.4 \pm 1.6 \pm 1.7 \pm 1.4)$nb is derived. A first measurement of the charm contribution F2_charm(x,Q~2) to the proton structure function for Bjorken $x$ between $8\cdot10~{-4}$ and $8\cdot10~{-3}$ is presented. In this kinematic range a ratio F2_charm/F2= 0.237\pm0.021{+0.043\atop-0.039}$ is observed.

10 data tables match query

Inclusive D meson production cross sections. The second systematc error represents the model uncertainty.

Inclusive charm meson cross section averaged for the two processes. The second systematc error represents the model uncertainty.

Ratio of cross sections of D0 and D* production.

More…

Measurement of the $Q~{2}$ dependence of the Charged and Neutral Current Cross Sections in $e~{\pm}p$ Scattering at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 379 (1996) 319-329, 1996.
Inspire Record 417155 DOI 10.17182/hepdata.44768

The $Q~{2}$ dependence and the total cross sections for charged and neutral current processes are measured in $e~{\pm}p$ reactions for transverse momenta of the outgoing lepton larger than 25 GeV. Comparable size of cross sections for the neutral current process and for the weak charged current process are observed above $Q~2\approx5000$GeV$~2$. Using the shape and magnitude of the charged current cross section we determine a propagator mass of $m_{W} = 84\ ~{+10}_{-7}$ GeV.

4 data tables match query

No description provided.

No description provided.

Total cross-section for E-P events.

More…

Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 545 (1999) 21-44, 1999.
Inspire Record 481112 DOI 10.17182/hepdata.44123

With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.

13 data tables match query

Total cross section for DIS D*+- production in the specified kinemtaic range.

DIS cross section as a function of the transverse D* momentum in the laboratory frame.

DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.

More…

Multi-jet event rates in deep inelastic scattering and determination of the strong coupling constant.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 575-585, 1999.
Inspire Record 473521 DOI 10.17182/hepdata.44216

Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~$\qq$ in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).

3 data tables match query

Measured (2+1) jet event rates using the modified JADE algorithm (C=MEAS), corrected to the hadron (C=HAD) and to the parton (C=PAR) level. The variable Z(p) is defined as the minimum (for i=1,2) of. (E_jet,i*(1-cos(theta_jet,i)/SUM(j=1,2)(E_jet,j*(1-cos(theta,j)).

ALPHAS at different Q2 values. The TOT error is the total error.

ALPHAS extrapolated to the Z0 mass. The second DSYS (systematic) error is from the jet finding alogrithm.