The polarization parameter in pp elastic scattering was measured at 6 GeV/ c with fine t resolution for 0.02 < − t < 0.5 GeV 2 using a polarized proton beam with Effective Mass Spectrometer at the Zero Gradient Synchrotron. The polarization rises like √− t in the interval 0.02 < − t < 0.1 GeV 2 , No statistical significant structure was found in this region of momentum transfer.
No description provided.
Cross sections and density-matrix elements for π−p→ϕn have been measured for - −t≲1.5 GeV2 at 3, 4, 5, and 6 GeV/c, using the Argonne effective-mass spectrometer to observe the decay ϕ(1019)→K+K−. This is the first observation of the reaction in this energy range. The remarkably flat differential cross section at 4 GeV/c and the strong energy dependence suggest a production mechanism not normally seen at these energies. Data on K−p→ϕΛ and K−p→ϕΣ0 from the same experiment are also presented.
No description provided.
No description provided.
Differential cross sections for K−p→K¯0n and K+n→K0p have been measured at 3, 4, and 6 GeV/c using a data sample of 6000 events. Contrary to simple exchange-degenerate models, the ratio of K+ to K− cross sections was found to be approximately 1.35, with little dependence on either s or t. Both reactions show a shallow dip near the forward direction, suggesting the importance of spin-flip amplitudes.
No description provided.
No description provided.
LARGE -T CONTRIBUTIONS (TYPICALLY 12 PCT) ESTIMATED FROM BUBBLE-CHAMBER DATA.
Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.
No description provided.
No description provided.
No description provided.
High statistics data on p p annihilation into five and more pions at 2.32 GeV/ c are presented. Cross sections for various final states and for the production of meson resonances have been determined. The Dalitz plot asymmetry for some 4 800 ω decay events produced in p p → 2π + 2π − π 0 is found to be consistent with zero. Upper limits for the production of exotic meson resonances are presented.
No description provided.
Differential cross sections have been measured for the reaction π−p→p¯d. At 4 GeV/c the total cross section is 0.58 ± 0.08 μb with an angular distribution consistent with isotropy. At 5 GeV/c a pronounced forward dip occurs. In contradiction to simple baryon-exchange models, the cross section is found to be an order of magnitude smaller than that for the line-reversed reaction pp→π+d. Upper limits for π−d→p¯t were also found.
No description provided.
No description provided.
Differential cross sections for π±p, K±p, pp, and p¯p elastic scattering were measured at 3, 3.65, 5, and 6 GeVc for momentum transfers from 0.03 to 1.5 GeV2 using the Argonne effective mass spectrometer. Particular attention was paid to the relative particle-antiparticle normalization. The crossover points are consistent with no energy dependence, average values being 0.14 ± 0.03, 1.190 ± 0.005, and 0.160 ± 0.007 GeV2 for π's, K's, and protons, respectively.
No description provided.
Complete angular distributions for the reactions p p → π − π + and other two meson states at 2.3 GeV/ c are presented. The extraordinary π − π + angular distribution is contrasted with the other final states and the predictions of simple models. A favourable comparison is made with the qualitative features of a dual model involving high mass meson states with a strong degeneracy with respect to I -spin.
SOME ANGULAR DISTRIBUTIONS ALSO PRESENTED.
K* NEUTRAL TO CHARGED PRODUCTION RATIO.
We give new experimental results on ρω interference and two-body cross sections in p¯p annihilation at 2.3GeVc. These are used, together with ρω interference results from lower energies, to argue that the annihilation process is not mediated by discrete s-channel mesonic resonances in the mass range 2.1-2.6 GeV.
No description provided.