Date

Elastic Scattering of 600-MeV Protons from H, D, He-3, and He-4

Boschitz, E.T. ; Roberts, W.K. ; Vincent, J.S. ; et al.
Phys.Rev.C 6 (1972) 457-466, 1972.
Inspire Record 79822 DOI 10.17182/hepdata.25567

The elastic scattering of 600-MeV protons from light nuclei has been studied at the National Aeronautics Space Administration Space Radiation Effects Laboratory (SREL) synchrocyclotron. Differential cross sections have been obtained for the scattering of protons from hydrogen, deuterium, helium-3, and helium-4. Polarization was measured for deuterium and He4 nuclei. The p−p cross-section data are in excellent agreement with the predictions from the Livermore phase shifts. Small-angle p−D, p−He3 elastic scattering data are compared with calculations based on the multiple-scattering theories of Watson and Glauber.

1 data table match query

No description provided.


K- p elastic scattering at 10-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Bartsch, J. ; Deutschmann, M. ; Kraus, G. ; et al.
Nucl.Phys.B 29 (1971) 398-404, 1971.
Inspire Record 68635 DOI 10.17182/hepdata.33567

Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.

3 data tables match query

No description provided.

ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.

NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).


Measurement of the real part of the k- p elastic scattering amplitude at 10 gev/c

Campbell, J.R. ; Cocconi, V.T. ; Duinker, P. ; et al.
Nucl.Phys.B 64 (1973) 1-13, 1973.
Inspire Record 94948 DOI 10.17182/hepdata.32421

Bubble chamber film of 10 GeV/ c K − p interactions was scanned automatically by an H.P.D. to look for small angle scatters in the | t |-range from 0.008 to 0.1 GeV 2 . Combining the 1800 events so obtained with 22 000 elastic events obtained from normal scanning (| t | > 0.06 GeV 2 ), the real part of the elastic scattering amplitude was found to be (+25 ± 10)% of the imaginary part. Evidence is found for a change in slope in the differential cross-section distribution, from 9.8 ± 0.6 GeV −2 in the | t |-range below 0.1 GeV 2 to 7.1 ± 0.2 GeV −2 in the range 0.12 < | t | ⩽ 0.4 GeV 2 .

4 data tables match query

No description provided.

THE 10 PCT ERROR IS THE RESULT OF A 5 PCT ERROR FROM THE FIT AND AN 8 PCT NORMALIZATION UNCERTAINTY.

No description provided.

More…

K- p elastic and charge-exchange scattering in the center-of-mass energy range 1915-2168 mev

Litchfield, P.J. ; Bacon, T.C. ; Butterworth, I. ; et al.
Nucl.Phys.B 30 (1971) 125-156, 1971.
Inspire Record 68612 DOI 10.17182/hepdata.33440

Total and differential cross sections are presented for the reactions K − p → K − p and K − p → K o n at 13 points in the c.m. energy range 1915–2168 MeV. An energy-dependent partial-wave analysis is carried out on these data together with the polarisation measurements of Daum et al. [1] and the total cross section measurements [2] within this energy range. The well known Σ(1915), Σ(2030) and Λ(2100) are observed and their resonance parameters measured. Structure is also found in the D 05 and F 07 waves. An SU(3) analysis of the 5 2 + octet, 7 2 + decuplet and 7 2 − singlet gives generally good agreement between theory and experiment except that the elasticity of the Σ(1915) is experimentally rather larger than predicted.

2 data tables match query

DETERMINED BY NORMALIZING AT ZERO DEG TO TOTAL CROSS SECTIONS VIA THE OPTICAL THEOREM.

THE MAXIMUM VALUE OF COS(THETA) VARIED BETWEEN 0.978 AND 0.988 (SEE TABLE 3).


201 GeV/c Proton Proton Elastic Scattering at Large Momentum Transfer

Hartmann, J.L. ; Orear, J. ; Vrieslander, J. ; et al.
Phys.Rev.Lett. 39 (1977) 975, 1977.
Inspire Record 120624 DOI 10.17182/hepdata.20930

Proton-proton elastic scattering has been measured in the region 4.9<|t|<12.1 GeV2 at a beam momentum of 201 GeV/c. If the form exp(At) is fitted to the data, the exponent A gradually changes from 1.5 to 0.9 GeV−2 over our t range. The data are consistent with the form exp(−6.6p⊥). A comparison with intersecting storage ring results shows that in this kinematical region the slopes are about the same, but dσdt at fixed t is still dropping with energy.

2 data tables match query

7904 ELASTIC EVENTS.

1030 ELASTIC EVENTS.


Large Angle Proton Proton Elastic Scattering at 201-{GeV}/$c$ and 400-{GeV}/$c$

Faissler, W. ; Gettner, M. ; Johnson, J.R. ; et al.
Phys.Rev.D 23 (1981) 33, 1981.
Inspire Record 154999 DOI 10.17182/hepdata.24141

Proton-proton elastic scattering using 201- and 400-GeV/c extracted beams at Fermilab has been measured in the region 4.9<−t<14.4 GeV2. Contrary to predictions of diffraction models, there is no sign of a second dip or "break," and the slope A in the fit exp(At) is smaller than predicted. It drops from 1.5 to 0.8 GeV−2 over our t range. The shape of the t distribution can be fitted by the power law dσdt∝t−8.4 which is close to a quantum-chromodynamics (QCD) prediction of t−8. At fixed t the 201-GeV/c cross sections are about 2.3 times those at 400 GeV/c which is compatible with the QCD and constituent-interchange-model prediction that dσdt∝s−10 at fixed ts.

5 data tables match query

LOW T.

HIGH T.

LOW T.

More…

400 GeV/c pp Elastic Scattering: Energy and Angle Dependence at High Momentum Transfer

Conetti, S. ; Hojvat, C. ; Ryan, D.G. ; et al.
Phys.Rev.Lett. 41 (1978) 924, 1978.
Inspire Record 131549 DOI 10.17182/hepdata.20819

Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.

2 data tables match query

No description provided.

No description provided.


Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

11 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…