None
First results from the magnetic detector PLUTO at the new e + e − storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 ± 0.5 at 13 GeV and 4.3 ±0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle.
The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have found evidence for the production of the excited charmed baryon state Λ c (2593) + in the channel Λ c + π + π − . Its mass was determined to be (2594.6±0.9±0.4) MeV/c 2 , and the natural width measured to be Γ = (2.9 −2.1−1.4 +2.9+1.8 ) MeV. The production cross section times the branching ratios of σ ( e + e − → Λ c (2593) + X ) × Br ( Λ c (2593) + → Λ c + π + π − ) × Br ( Λ c + → pK − π + ) was measured to be (0.25 −0.13 +0.24 ±0.13) pb. The fractions of Λ c (2593) + decays proceeding through the Σ c 0 π + and Σ c ++ π − channels were determined to be 0.29±0.10±0.11 and 0.37±0.12±0.13, respectively.
With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.
Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as withe+e− dat from LEP.
High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.