We present a study of the structure of hadronic events recorded by the L3 detector at LEP at the center of mass energies of 161 and 172 GeV. The data sample corresponds to an integrated luminosity of 21.25 pb −1 collected during the high energy runs of 1996. The distributions of event shape variables and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O ( α s 2 ) QCD calculations, we determine the strong coupling constant at the two energies. Combining this with our earlier measurements we find that the strong coupling constant decreases with increasing energy as expected in QCD.
No description provided.
Average jet multiplicity using JADE algorithm.
Average jet multiplicity using Durham algorithm.
We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.
Data measured using the 2.75 degree spectrometer.
Data measured using the 5.5 degree spectrometer.
Measured value of the twist-3 reduced matrix element D2.
We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.
Data from the 2.75 degree spectrometer.
Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.
Data from the 5.5 degree spectrometer.
The reaction e + e − → e + e − γ ∗ γ ∗ → e + e − hadrons is analysed using data collected by the L3 detector during the LEP runs at s = 130−140 GeV and s = 161 GeV . The cross sections σ(e + e − → e + e − hadrons) and σ(γγ → hadrons) are measured in the interval 5 ≤ W γγ ≤ 75 GeV. The energy dependence of the σ(γγ → hadrons) cross section is consistent with the universal Regge behaviour of total hadronic cross sections.
No description provided.
No description provided.
We have searched for heavy neutral gauge bosons (Z′) in dielectron and dimuon decay modes using 110pb−1 of p¯p collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We present a limit on the production cross section times branching ratio of a Z′ boson decaying into dileptons as a function of Z′ mass. For mass MZ′>600GeV/c2, the upper limit is 40 fb at 95% confidence level. We set the lower mass limits of 690, 590, 620, 595, 565, 630, and 600GeV/c2 for ZSM′, Zψ, Zη, Zχ, ZI, ZLR, and ZALRM, respectively.
M is the mass of ZPRIME boson. Sigma times branching ratio.
The dilepton mass spectrum in pp¯→l+l−+X interactions is studied using dielectrons (ee) and dimuons (μμ) in 110pb−1 of data collected with the Collider Detector at Fermilab. The data are consistent with standard model predictions. The mass spectrum, being a probe for new physics, is examined for new interactions of quarks and leptons from a common composite structure. Assuming a contact interaction with the conventional coupling g02/4π=1, limits on chiral quark-electron and quark-muon compositeness scales in the range of 2.5 to 4.2 TeV are obtained.
Di-electron data and Standard Model event predicitions.
Di-muon data and Standard Model event predicitions.
We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
We report on measurements of e + e − annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb −1 of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.
No description provided.
No description provided.
No description provided.
We have measured the B hadron energy distribution in Z0 decays using a sample of semi-leptonic B decays recorded in the SLD experiment at SLAC. The energy of each tagged B hadron was reconstructed using information from the lepton and a partially reconstructed charm-decay vertex. We compared the scaled energy distribution with several models of heavy quark fragmentation. The average scaled energy of primary B hadrons was found to be <x_E_B> = 0.716 +- 0.011 (stat.) +0.022 -0.021 (syst.).
Bin center values for X are given.
No description provided.