Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Charged hadron production ine+e− annihilation is studied in the 7 to 10 GeV CM energy region and at the Υ (9.46) and Υ′ (10.01) resonances with the LENA detector at DORIS. The statistical moments of the charged multiplicities are studied. The data show KNO scaling behaviour and suggest the presence of long range correlations. An average charged multiplicityrise of Δn(Υ)=0.55±0.19 and Δn(Υ′)=1.26±0.29 over the continuum is observed for the Υ and Υ′ direct decays. The jet structure of the Υ and Υ′ direct decays is investigated using the charged particles. The polar angular distributions of the jet axis behave like 1+α(T) cos2θ with 〈α(T)〉Υ=0.7±0.3 and 〈α(T)〉Υ′=0.6±0.4. The 〈α(T)〉Υ value is in agreement with the QCD vector gluon assignment and excludes scalar gluons by more than four standard deviations.
The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.
From the Kelly compilation.
The analyzing powers of π+ and π− were measured using an incident 22−GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured π± inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers AN for π± were determined in the xF and pT ranges (0.45–0.8) and (0.3–1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of π+ and π− produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed.
Analyzing power measurements for PI+ and PI- production on the carbon target at incident momentum 21.6 GeV. See text of article for definitions of method 'A' and 'B'.
Analyzing power measurements for inclusive PI- production from the hydrogen target.
Analyzing power measurements for inclusive PI+ production from the hydrogen target.
The rationR=σ(e+e−→hadrons)/σ(e+e−→ µ+ µ−) was measured with the LENA detector at DORIS in a scan between 7.40 and 7.48 GeV and between 8.67 and 9.43 GeV center of mass energies. Corrected for QED radiative effects,R is found to be constant with an average value ofR=3.37 ±0.06stat±0.23syst. No narrow resonances withΓee(Γhad/Γtot)⊗0.30 keV (95% C.L.) and no steps have been observed. Based on this value ofR, revised values for υ(1S) resonance parameters are presented.
The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.
No description provided.
No description provided.
No description provided.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.
We present a search for electroweak production of single top quarks in $\approx 90$ $pb^{-1}$ of data collected with the DZero detector at the Fermilab Tevatron collider. Using arrays of neural networks to separate signals from backgrounds, we set upper limits on the cross sections of 17 pb for the s-channel process $p\bar{p} \to tb + X$, and 22 pb for the t-channel process $p\bar{p} \to tqb + X$, both at the 95% confidence level.