The inclusive reaction K + p → K 0 + X is studied at 5, 8.2 and 16 GeV/ c . The energy dependence and the shapes of inclusive spectra in the central region are found to be consistent with double-Regge expansion. With the values obtained for the parameters of the Regge expansion, prediction are made for the behaviour of the cross section at higher energies.
No description provided.
No description provided.
No description provided.
We report results from a measurement of the inclusive process p+d→X+d in the region 0.03<|t|<0.12 (GeV/c)2 and 5 GeV2<MX2≲0.11plab for incident proton momenta from 150 to 400 GeV/c. We find that in this region, the differential cross section d2σdtdMX2 varies only slowly with energy, falls exponentially with |t|, and behaves to a good approximation as 1MX2. The measurement was performed at Fermilab by detecting slow-recoil deuterons from a deuterium-gas-jet target placed at the internal beam of the accelerator.
No description provided.
No description provided.
No description provided.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
No description provided.
We have measured p−d inelastic scattering at small momentum transfer by detecting the slow-recoil deuterons from a deuterium-gas-jet target. The coherent diffraction dissociation of protons on deuterons was studied in the region 0.03<|t|<0.07 (GeV/c)2, 1.4<MX2<4 GeV2, and for energies from 50 to 275 GeV. In this region, the diffractive cross section exhibits structure and is dominated by an enhancement at MX2∼1.9 GeV2.
No description provided.
No description provided.
No description provided.
The differential cross sections of the elastic p p reaction have been measured at 1.2, 1.4, 1.8 and 2.6 GeV/ c incident p momentum. The measurements have been performed at the CERN PS using a system of multiwire proportional chambers. The angular region covers scattering angles from 0 to ∼200 mrad. Interference effects between the Coulomb and the nuclear amplitudes are used to derive the ratio of the real to imaginary part of the forward nuclear amplitude. These ratios are compared with theoretical predictions.
'MS'. 'TBIN'.
'MS'. 'TBIN'.
'MS'. 'TBIN'.
Elastic Σ − p and π − p cross section have been measured at 17.2 GeV/ c in the t interval −0.12, −0.38 (GeV/ c ) 2 . The Σ − p slope is b = 8.12 ± 0.35 (GeV/ c ) −2 .
No description provided.
NORMALIZED TO PI- P ELASTIC FORWARD DIFFERENTIAL CROSS SECTION OF 31.2 +- 1.9 MB/GEV**2 (PLUS 6 PCT SYSTEMATIC ERROR) OF K. J. FOLEY ET AL., PRL 11, 425 (1963).
NUMERICAL VALUES SUPPLIED BY J. J. BLAISING AND ADDED TO RECORD ON 19 DEC 77.
An accurate measurement of d σ d Ω (π − p → η n ) at 1531 MeV total energy (expanded) up to l = 4 Legendre polynomials) requires reconsideration of previous angular distribution fits which were expanded only up to l = 2 and of subsequent partial-wave analysis. An energy-dependent partial-wave analysis has been performed here for p η ∗ up to 450 MeV/ c . In addition to the well-known S 11 (1520 MeV) resonance, either the P 11 (1532 MeV) or the P 13 (1530 MeV) resonance is found to be strongly coupled to the η-n channel. In both cases, the P 11 (1729 MeV) resonance is needed as is the weakly coupled D 13 (1525 MeV) resonance. The decay states in the ηn channelare compared to the SU(3) and SU(6) W predictions.
No description provided.
No description provided.
The polarized target asymmetry in the reaction γp→π°p has been measured at c.m. angles around 100° for photon energies between 0.4 and 1.0 GeV by detecting both the recoil proton and the π°. The result is compared with recent analyses.
No description provided.
In this paper a comparison of the general features of the reactions K ± p→Q ± p (1) at incident momentum 8.25 GeV/ c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K ± p→K ± π + π − p in exposures of the CERN 2m HBC to RF-separated K + and K − beams. The (K ππ ) effective mass distributions, production angular distributions in the Q region (1.2⩽ M (K ππ )⩽1.5 GeV) and corresponding decay angular distributions are exhibited, and background effects due to N ∗ and Δ production are systematically studied. In particular, it is found that the distributions d σ /d t ′ and d σ /d t for reactions (1) are adequately described by exponential functions over the interval 0.05–0.35 GeV 2 , and exhibit a cross-over effect for momentum transfer squared −0.1 GeV 2 . For both reactions a flattening of d σ /d t ′ for t ′ < 0.05 GeV 2 is observed. By studying the Chew-Low plots and the effects of the different cuts it was found that this flattening cannot be attributed to amplitudes with net s -channel helicity flip different from zero, at least at these energies.
ABOUT 7 PCT RELATIVE NORMALIZATION UNCERTAINTY FOR K+ AND K- SAMPLES.
FITS TO D(SIG)/DT AND D(SIG)/DTP FOR Q+ AND Q- PRODUCTION TO DETERMINE CROSS-OVER POSITIONS. DATA HAVE MASS CUTS TO SELECT K*0 AND REMOVE DEL++ AND DEL0. MIN IS THE MINIMUM VALUE OF -T FOR THE RELEVANT (K PI PI) MASS.
The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.
DIFFERENTIAL CROSS SECTIONS FOR THREE RANGES OF <P PI+ PI-> MASS.
FROM BREIT-WIGNER PLUS BACKGROUND FITS. CORRECTIONS FOR OTHER DECAY MODES USE THE PDG 1974 TABLES FOR N(1520) AND N(1688).