We present a search for electroweak production of single top quarks in $\approx 90$ $pb^{-1}$ of data collected with the DZero detector at the Fermilab Tevatron collider. Using arrays of neural networks to separate signals from backgrounds, we set upper limits on the cross sections of 17 pb for the s-channel process $p\bar{p} \to tb + X$, and 22 pb for the t-channel process $p\bar{p} \to tqb + X$, both at the 95% confidence level.
The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.
Cross section refers to top quark mass equal 199. (+19, -21, +- 22) GeV.
We report a new measurement of the pseudorapidity (eta) and transverse-energy (Et) dependence of the inclusive jet production cross section in pbar b collisions at sqrt(s) = 1.8 TeV using 95 pb**-1 of data collected with the DZero detector at the Fermilab Tevatron. The differential cross section d^2sigma/dEt deta is presented up to |eta| = 3, significantly extending previous measurements. The results are in good overall agreement with next-to-leading order predictions from QCD and indicate a preference for certain parton distribution functions.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.
No description provided.
Combined electron and muon analysis.
The gauge boson pair production processes Wg, WW, WZ, and Zg were studied using pbarp collisions corresponding to an integrated luminosity of ~14 pb-1 at a center-of-mass energy of sqrt(s) = 1.8 TeV. Analysis of Wg prod with subsequent W boson decay to lv (l=e,mu) is reported, including a fit to the pT spectrum of the photons which leads to limits on anomalous WWg couplings. A search for WW prod with subsequent decay to l-lbar-v-vbar (l=e,mu) is presented leading to an upper limit on the WW prod cross section and limits on anomalous WWg and WWZ couplings. A search for high pT W bosons in WW and WZ prod is described, where one W boson decays to an ev and the second W boson or the Z boson decays to two jets. A maximum likelihood fit to the pT spectrum of W bosons resulted in limits on anomalous WWg and WWZ couplings. A combined fit to the three data sets which provided the tightest limits on anomalous WWg and WWZ couplings is also described. Limits on anomalous ZZg and Zgg couplings are presented from an analysis of the photon ET spectrum in Zg events in the decay channels (ee, mu-mu, and v-vbar) of the Z boson.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.
Data are extracted from the figure. Sigma*Br.
Bottom quark production in pbar-p collisions at sqrt(s)=1.8 TeV is studied with 5 inverse picobarns of data collected in 1995 by the DO detector at the Fermilab Tevatron Collider. The differential production cross section for b jets in the central rapidity region (|y(b)| < 1) as a function of jet transverse energy is extracted from a muon-tagged jet sample. Within experimental and theoretical uncertainties, DO results are found to be higher than, but compatible with, next-to-leading-order QCD predictions.
No description provided.
Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.
The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.
No description provided.