New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.
Collins asymmetry against PT for all negative hadrons.
Collins asymmetry against Bjorken X for all negative hadrons.
Collins asymmetry against Z for all negative hadrons.
We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
We report a measurement of the exclusive $e^+e^- \to D^{(*)\pm}{D}{}^{*\mp}$ cross section as a function of center-of-mass energy near the $D^{(*)^{\pm}}{D}{}^{*\mp}$ threshold with initial state radiation. A partial reconstruction technique is used to increase the efficiency and to suppress background. The analysis is based on a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 547.8 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+ e^-$ collider.
Cross section for E+ E- --> D*+ D*-.
Cross section for E+ E- --> D+ D*- (plus charged conjugate).
Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q2 > 125 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. Jets were identified in the Breit frame using the kt cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q2. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions.
Dijet cross section as a function of Q**2 in the Breit frame.
Dijet cross section as a function of Bjorken X in the Breit frame.
Dijet cross section as a function of the mean ET of the jets in the Breit frame.
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.
We present the first statistically meaningful results from two-K0s interferometry in heavy-ion collisions. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channel were explored. At the mean transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.) +/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and lambda are the invariant radius and chaoticity parameters respectively. The results are qualitatively consistent with m_T systematics established with pions in a scenario characterized by a strong collective flow.
K0s invariant mass distribution
Signal to (Signal + Background) ratio for K0s decay length > 6 cm.
Mean KT distribution of K0s pairs
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.
We present strange particle spectra and yields measured at mid-rapidity in $\sqrt{\text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($\mathrm{m_{T}}\equiv\sqrt{\mathrm{p_{T}}^{2}+\mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher \mt and that there is a difference in the shape of the \mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $\Lambda$ and $\Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (\mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.
Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.
Non photonic electron yield in minimum bias D+AU collisions versus $p_{T}$.
Non photonic electron yield in Au+Au collisions versus $p_{T}$, for a centrality range of 40-80%.