Date

Inclusive proton production cross-sections in (d, x p) reactions induced by 100-MeV deuterons

Ridikas, D. ; Mittig, W. ; Savajols, H. ; et al.
Phys.Rev.C 63 (2001) 014610, 2001.
Inspire Record 551789 DOI 10.17182/hepdata.25392

Energy spectra and angular distributions of protons emitted from the inclusive (d,xp) reaction on 9Be, 12C, 27Al, 58Ni, 93Nb, 181Ta, 208Pb, and 238U were measured at an incident deuteron energy of 100 MeV. The protons were detected at laboratory scattering angles of 6° to 120° and 8° to 120° for the targets with 9<~A<~27 and A>~58, respectively. Two triple-element and three double-element detector telescopes allowed for a low energy detection threshold of 4 to 8 MeV. The experimental results are presented in double-differential as well as angle- and energy-integrated cross sections. For all the nuclei studied, the energy spectra at forward angles show pronounced deuteron breakup peaks centered around approximately half of the incident deuteron energy. Qualitatively the energy spectra are similar for all nuclei at a given angle except in the region of the low-energy evaporation peak. As a function of target mass the evaporation cross sections are found to increase up to A=58 after which they decrease again. The total preequilibrium proton cross section is roughly (280±60)A1/3 mb. The angular distributions at the high emission energies are strongly forward peaked while the distributions of the low-energy protons are almost isotropic. The LAHET code system (LCS) was applied to calculate the proton production cross sections. Standard LCS calculations are found to underpredict the experimental cross sections at the very forward angles on the heavy target nuclei (A≳58). By adding incoherently the Coulomb breakup cross section of the deuteron to the LCS calculations the experimental cross sections are reproduced to within 10%. Although preequilibrium processes are a necessary ingredient in the LCS calculations of the large-angle cross sections, this code still fails to predict the experimental evaporation distributions.

1 data table

All Cross Sections has errors 10 pct (for PB208 and U238 errors >10 pct) including systematic uncertainties. Tabulated proton multiplicities extracted from the experimental data by dividing proton cross section by reaction cross section using the empirical expression pi*(1.58A**(1/3)+.671*Ad**(1/3))**2 (taken from PR B348, 697).


Thermal excitation and decay of nuclei from anti-proton - nucleus interactions at 1.22-GeV

Lott, B. ; Goldenbaum, F. ; Bohm, A. ; et al.
Phys.Rev.C 63 (2001) 034616, 2001.
Inspire Record 553445 DOI 10.17182/hepdata.25290

The formation and subsequent decay of nuclei excited via the annihilation of 1.22-GeV antiprotons have been investigated at the low energy antiproton ring (LEAR). Both neutrons and charged products, from protons up to fission fragments and heavy residues, were detected over a solid angle of 4π by means of the Berlin neutron ball (BNB) and the Berlin silicon ball (BSiB), respectively. All events associated with an inelasticity greater than 10 MeV were recorded, a condition fulfilled for 100% of the annihilation events. The distributions of excitation energy (E*) of the transient hot nuclei have been investigated for a large range of target nuclei, E* being determined event by event from the total multiplicity of light particles. The average excitation energies are about twice as large as for annihilations at rest, and range from 2.5 MeV/nucleon for the Cu target to 1.5 MeV/nucleon for the U target, in good agreement with the predictions of an intranuclear-cascade model. The distributions extend to E*>8 MeV/nucleon for Cu and E*>5 MeV/nucleon for Au, with cross sections exceeding 1% of σreac. Thanks to the capability of determining E* for all events, largely irrespective of their mass partitions, the probabilities of the different decay channels at play could be estimated as a function of E*. The data show the prevalence of fission and evaporation up to E*=4–5 MeV/nucleon for Au and U. The fission probability Pfis was measured for the first time over the full range of E*. The reproduction of the data by statistical models is reasonable, provided that the ratio af/an is adjusted for the different targets and a transient time shorter than 1×10−21 s is considered. The experiment has allowed the fission probability to be investigated as functions of the associated neutron and light-charged particle multiplicities. The intermediate-mass fragment multiplicities rise smoothly with E* up to about 1 unit at E*=1 GeV for Au and U, with no indication of significant contribution from another process than evaporation. Heavy residues have been measured quite abundantly at the highest E*, with most of their kinetic energy arising from the recoil effects in the evaporation stage. Overall, the data allow a coherent picture to be established, consistent with the hot nucleus retaining conventional decay properties.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Alpha breakup of Li-6 and Li-7 near the Coulomb barrier

Kelly, G. R. ; Davis, N. J. ; Ward, R. P. ; et al.
Phys.Rev.C 63 (2001) 024601, 2001.
Inspire Record 551836 DOI 10.17182/hepdata.25434

Angular distributions of the α-particle production differential cross section from the breakup of 6Li and 7Li projectiles incident on a 208Pb target have been measured at seven projectile energies between 29 and 52 MeV. The α-breakup cross section of 6Li was found to be systematically greater than that of 7Li across the entire energy range. These data have been compared with previously reported results and with the predictions of continuum-discretized coupled channels (CDCC) calculations including resonant and nonresonant projectile breakup. The present data compare well with previous measurements, while the CDCC calculations provide a reasonable prediction of the relative α-breakup cross sections but underpredict their absolute values. The calculations confirm that a major factor in the enhancement of the 6Li to 7Li α-breakup cross section is the difference between the α-breakup thresholds of the two isotopes. These results have implications for structural studies of light exotic nuclei based on elastic scattering.

2 data tables

No description provided.

No description provided.


Low energy measurement of the 7Be(p,gamma)8B cross section

Hammache, F. ; Bogaert, G. ; Aguer, P. ; et al.
Phys.Rev.Lett. 86 (2001) 3985-3988, 2001.
Inspire Record 552683 DOI 10.17182/hepdata.31784

We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.

1 data table

CONST = E**2*Z1*Z2*/(V), where Z1 and Z2 are the nuclear charges of the interacting particles. The extrapolation to Ecm = 0.0. The statistical and systematic error are combined in quadrature. The last value (P=0) is results of averaging with previous data.


Cross sections of the p p --> p p pi0 reaction between 310-MeV and 425-MeV

Bilger, R. ; Brodowski, W. ; Calén, H. ; et al.
Nucl.Phys.A 693 (2001) 633-662, 2001.
Inspire Record 566664 DOI 10.17182/hepdata.36159

None

1 data table

ABSOLUTE TOTAL CROSS SECTIONS.


Exclusive electroproduction of Phi mesons at 4.2-GeV.

The CLAS collaboration Lukashin, K. ; Smith, E.S. ; Adams, G.S. ; et al.
Phys.Rev.C 64 (2001) 059901, 2001.
Inspire Record 552246 DOI 10.17182/hepdata.38589

We studied the exclusive reaction e p --> e' p' phi using the phi --> K^+ K^- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CLAS detector at Jefferson Lab. Our experiment covers the range in Q^2 from 0.7 to 2.2 GeV^2, and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of phi production on the proton. Our measurement shows the expected decrease of the t-slope with the vector meson formation time c Delta tau below 2 fm. At = 0.6 fm, we measure b_phi = 2.27 +- 0.42 GeV^-2. The cross section dependence on W as W^{0.2+-0.1} at Q^2 = 1.3 GeV^2 was determined by comparison with phi production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction.

3 data tables

Slope of the DSIG/DT distribution in different Q**2 regions.

Cross section as a function of Q**2 and W.

The differential cross section for exclusive PHI electroproduction off the photon, (TP=T-TMIN).


Estimate of the Delta(1232) component in the C-12 nucleus

Bystritsky, V.M. ; Glavanakov, I.V. ; Grabmayr, P. ; et al.
JETP Lett. 73 (2001) 453-456, 2001.
Inspire Record 563307 DOI 10.17182/hepdata.16707

The cross section for the 12C(γ, π+ p) reaction was measured in the range of the Δ(1232) isobar. The data were analyzed using the models taking into account the nucleon and isobaric degrees of freedom of the 12C nucleus. The conclusion is drawn that in the large-momentum transfer range the π+ p pairs are produced in the course of the direct knocking-out of Δ++ isobar from the nucleus. The probability of finding the Δ isobar in the ground-state 12C nucleus is estimated at 0.018±0.005 Δ isobars per nucleon.

1 data table

The accuracy of the proton energy measurement = 4 MeV. The accuracy of the proton angles: DTHETA = 3 deg and DPHI = 2 deg. The background events < 3 pct for 450 MeV GAMMA energy (500 MeV of electron energy) and negligible for 400 MeV beam (420 MeV of electron energy). The estimation of the probability of finding DELTA in the ground state of C12 nucleus equals 0.018 +- 0.005 DELTA/nucleon.


Production of chi/c1 and chi/c2 in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 86 (2001) 3963-3968, 2001.
Inspire Record 557478 DOI 10.17182/hepdata.19422

We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.

1 data table

No description provided.


Correlated Lambda/c+ anti-Lambda/c- production in e+ e- annihilations at s**(1/2) approx. 10.5-GeV.

The CLEO collaboration Bornheim, A. ; Lipeles, Elliot David ; Pappas, S.P. ; et al.
Phys.Rev.D 63 (2001) 112003, 2001.
Inspire Record 552541 DOI 10.17182/hepdata.47283

Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.

4 data tables

Statistal errors only.

Statistal errors only.

Statistal errors only.

More…

Bounds on the CP asymmetry in like sign dileptons from B0 anti-B0 meson decays

The CLEO collaboration Jaffe, D.E. ; Mahapatra, R. ; Masek, G. ; et al.
Phys.Rev.Lett. 86 (2001) 5000-5003, 2001.
Inspire Record 551926 DOI 10.17182/hepdata.47284

We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.

1 data table

CONST(NAME=EPSILON) is CP impurity parameter.