PHYSICS WITH HIGH-ENERGY ELECTRON POSITRON COLLIDING BEAMS WITH THE MARK-J DETECTOR

The MARK-J & AACHEN-DESY-MIT-NIKHEF-BEIJING collaborations Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Rept. 63 (1980) 337-391, 1980.
Inspire Record 158857 DOI 10.17182/hepdata.27618

This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .

4 data tables

SUMMARY OF RESULTS FOR R FROM TOTAL OF 2595 HADRON EVENTS. INCLUDES RED = 1046, 1079, 1072 AND 1114.

MEAN THRUST AND THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17, 22 AND 30 GEV. SOMEWHAT DETECTOR DEPENDENT. INCLUDES RED = 1079 AND 1072. SEE ALSO RED = 1114. ALSO JET ANALYSIS USING FOX-WOLFRAM MOMENTS.

OBLATENESS DISTRIBUTION AT 17 AND 27.4 TO 31.6 GEV. SEE RED = 1146.

More…

K0 production in one prong tau decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 219-227, 1994.
Inspire Record 373752 DOI 10.17182/hepdata.68011

From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .

1 data table

Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.


One prong tau decays into charged kaons

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 209-218, 1994.
Inspire Record 373751 DOI 10.17182/hepdata.68012

Form a sample of about 75000 τ decays measured in the ALEPH detector, 1-prong charged kaon decays are identified by the dE / dx measurement in the central detector. The resulting branching ratios for the inclusive and exclusive modes are: B ( τ → ν τ K − ≥ 0 π 0 ≥ 0 K 0 ) = (1.60±0.07±0.12)%, B ( τ → ν τ K − = (0.64±0.05±0.05)%, B ( τ → ν τ − π 0 = (0.53±0.05±0.07)% and B ( τ → ν τ K − π 0 π 0 ) = (0.04±0.03±0.02)%. Exclusive modes are corrected for measured K L 0 production. The rate for τ → ν τ K − agrees well with the prediction based on τ - μ universality.

1 data table

Invariant mass distribution of the $K\pi^0$ final state, as obtained from a $dE/dx$ fit in each mass bin. The numbers have been read from the plot in the paper, with the errors simply set to zero if they are smaller than the point size.


Search for single top production in e+ e- collisions at s**(1/2) = 189-GeV - 202-GeV.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 494 (2000) 33-45, 2000.
Inspire Record 533360 DOI 10.17182/hepdata.49857

Single top production via flavour changing neutral currents in the reactions e + e − → t ̄ c / u is searched for in approximately 411 pb −1 of data collected by ALEPH at centre-of-mass energies in the range between 189 and 202 GeV. In total, 58 events are selected in the data to be compared with 50.3 expected from Standard Model backgrounds. No deviation from the Standard Model expectation is observed. Upper limits at 95% CL on single top production cross sections at s =189 –202 GeV are derived. A model-dependent limit on the sum of branching ratios BR(t→Zc)+BR(t→Zu)<17% is obtained.

1 data table

SIG(C=LEPT) and SIG(C=HADR) are the cross sections upper limits evaluated for leptonic and hadronic decay modes of the W-boson, while SIG(C=COMB) are the values obtained by combining the leptonic and hadronic W-boson decay channels. All cross sections values are obtained under assumption of BR(TQ --> W+ BQ) = 100 %.


Measurement of the spectral functions of vector current hadronic tau decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Z.Phys.C 76 (1997) 15-33, 1997.
Inspire Record 440588 DOI 10.17182/hepdata.68475

A measurement of the spectral functions of non-strange τ vector current final states is presented, using 124 358 τ pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion τ decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from τ decays and e+e- data is performed using different parametrizations. The mass and the width of the ρ±(770) and the ρ0(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be Mρ±(770) - Mρ0(770) = (0.0 ± 1.0) MeV/c2 and Γρ±(770) - Γρ0(770) = (0.1 ± 1.9) MeV/c2.

6 data tables

Invariant mass-squared distribution of the $\tau^- \to h^- \pi^0 \nu_{\tau}$ decay. The error has been set to zero if it is smaller than the point size. A dash indicates a data point lying outside the plot range.

Invariant mass-squared distributions of the $h^- 3\pi^0 \nu_{\tau}$ decay channel. The error has been set to zero if it is smaller than the point size.

Invariant mass-squared distribution of the $2h^- h^+ \pi^0 \nu_{\tau}$ decay channel. The error has been set to zero if it is smaller than the point size.

More…

A study of tau decays involving eta and omega mesons.

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 74 (1997) 263-273, 1997.
Inspire Record 421984 DOI 10.17182/hepdata.68382

The 132 pbt - 1 of data collected by ALEPH from 1991 to 1994 have been used to analyze η and ω production in τ decays. The following branching fractions have been measured: \(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }} \right) = \left( {1.91 \pm 0.07 \pm 0.06} \right) \times {10^{ - 2}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }{\pi ^0}} \right) = \left( {4.3 \pm 0.6 \pm 0.5} \right) \times {10^{ - 3}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {K^ - }} \right) = \left( {2.9_{ - 1.2}^{ + 1.3} \pm 0.7} \right) \times {10^{ - 4}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {h^ - }{\pi ^0}} \right) = \left( {1.8 \pm 0.4 \pm 0.2} \right) \times {10^{ - 3}}\) and the 95% C.L. limit B(τ− → ντηπt -) < 6.2 × 10t - 4 has been obtained. The ωπt- and ηπt -π0 rates and dynamics are found in agreement with the predictions made from e+e∼ - annihilation data with the help of isospin invariance (CVC).

6 data tables

$\pi^+\pi^-\pi^0$ mass distribution (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the one-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.

$\pi^+\pi^-\pi^0$ mass distributions (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the two-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.

Background-subtracted $\omega\pi$ mass spectrum for the data presented here, plotted as black dots. The error has been set to zero if it is smaller than the point size.

More…

Properties of Hadronic Events in e$^{+} $e$^{-}$ Annihilation at $S^{(1/2)}=91$-{GeV}

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 234 (1990) 209-218, 1990.
Inspire Record 283354 DOI 10.17182/hepdata.29739

We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.

1 data table

NO RAD. CORR APPLIED.


A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

4 data tables

Penetrating charged particle track selection.

Calorimeter selection.

Average cross section.

More…

Determination of the Number of Light Neutrino Species

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 231 (1989) 519-529, 1989.
Inspire Record 282904 DOI 10.17182/hepdata.29758

The cross-section for e + e − → hadrons in the vicinity of the Z boson peak has been measured with the ALEPH detector at the CERN Large Electron Positron collider, LEP. Measurements of the Z mass, M z = (91.174±0.070) GeV, the Z width Γ z =(2.68±0.15) GeV, and of the peak hadronic cross-section, σ had peak =(29.3±1.2) nb, are presented. With the constraints of the standard electroweak model, the number of light neutrino species is found to be N v =3.27±0.30. this results rules out of the possibility of a fourth type of light neutrino at 98% CL.

2 data tables

Selection from TPC tracks.

Selection by calorimeters.


Measurement of the spectral functions of axial-vector hadronic tau decays and determination of alpha(S)(M(tau)**2).

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 4 (1998) 409-431, 1998.
Inspire Record 467093 DOI 10.17182/hepdata.68902

An analysis based on 124 000 selected $\tau$ pairs recorded by the ALEPH detector at LEP provides the vector $(V)$ and axial-v

7 data tables

Total vector spectral function. The error has been set to zero if it is smaller than the point size.

Invariant mass-squared distributions of the decay $\tau^- \to 2\pi^- \pi^+ \nu_\tau$. The error has been set to zero if it is smaller than the point size.

Invariant mass-squared distributions of the decay $\tau^- \to \pi^- 2\pi^0 \nu_\tau$. The error has been set to zero if it is smaller than the point size.

More…