Study of forward Z+jet production in pp collisions at $\sqrt{s} = 7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 01 (2014) 033, 2014.
Inspire Record 1262703 DOI 10.17182/hepdata.69938

A measurement of the $Z(\rightarrow\mu^+\mu^-)$+jet production cross-section in $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV is presented. The analysis is based on an integrated luminosity of $1.0\,\text{fb}^{-1}$ recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction ($2.0<\eta<4.5$). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.

8 data tables

The $Z$+jet cross-section at Born level in $pp$ collisions at $\sqrt{s}=7$ TeV. The first uncertainty is statistical, the second is systematic and the third is the uncertainty due to the luminosity determination.

The cross-section ratio $\sigma(Z+\mathrm{jet})/\sigma(Z)$ at Born level in $pp$ collisions at $\sqrt{s}=7$ TeV. The first uncertainty is statistical, the second is systematic and the third is the uncertainty due to the luminosity determination.

Differential cross-section for $Z$+jet in the leading jet $p_T$, for $p_{T}^{\mathrm{jet}} > 10$ GeV/$c$. These results are not corrected for FSR from the final state muons from the $Z$ boson decay.

More…

K0(s) k0(l) production by e+ e- annihilation at phi energy

Cosme, G. ; Jean-Marie, B. ; Jullian, S. ; et al.
Phys.Lett.B 48 (1974) 159-161, 1974.
Inspire Record 95372 DOI 10.17182/hepdata.27993

Data have been taken at the φ energy with the same large solid angle detector which has been used for the measurement of the ϱ and ω production by e + e − annihilations. From the φ → K o L K o S π + φ − excitation curve we have deduced the φ width Γ φ = (3.81 ± 0.37) MeV and the cross-section σ e + e − → K o L K o S = (1.48±0.08±0.12) μ b. (the quoted errors are respectively statistical and systematical.)

2 data tables

EXPERIMENTAL CROSS SECTION INCLUDING RADIATIVE EFFECTS.

FITTED CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.


Hadronic Cross-sections Study in $e^+ e^-$ Collisions From 1.350-{GeV} to 2.125-{GeV}

Cosme, G. ; Dudelzak, B. ; Grelaud, B. ; et al.
Nucl.Phys.B 152 (1979) 215-231, 1979.
Inspire Record 133311 DOI 10.17182/hepdata.34784

The results of the first experiment performed at DCI in e + e − annihilations in the c.m. energy range 1.350–2.125 GeV region are presented. The cross sections of various multipion channels are extracted. Significant structure appears in some specific channels. A relatively narrow resonance around 1.660 GeV decaying into 3 π 's is found. Charged and neutral multiplicities, and also the ratio R are given.

2 data tables

PEAK CROSS SECTION FROM FIT WITH BREIT-WIGNER RESONANCE PLUS CONSTANT BACKGROUND TO ISOSCALAR JPC = 1-- STRUCTURE OF MASS 1652 +- 17 MEV AND WIDTH OF 42 +- 17 MEV.

R VALUE SEEMS CONSTANT OVER THIS ENERGY RANGE.


Multi-Pion Production Below 1.1-GeV by e+ e- Annihilation

Cosme, G. ; Courau, A. ; Dudelzak, B. ; et al.
Phys.Lett.B 63 (1976) 349-351, 1976.
Inspire Record 115717 DOI 10.17182/hepdata.27637

The production of multipion events by e + e − annihilation has been measured at centre of mass energies 915,990 and 1076 MeV. Both channels e + e − → π + π − π o and e + e − → π + π − π + π − have been analysed. An energy threshold effect analysed. An energy threshold effect around 919 MeV ( m ω + m π o ) has been evidenced for the π + π − π o π o channel and the cross section is consistent with the quasi two-body process e + e − → ωπ o . The cross section for π + π − π + π − is lower by an order of magnitude and increases with the energy.

2 data tables

SYSTEMATIC ERROR INCLUDED. RADIATIVE EFFECT (<15 PCT) INCLUDED.

MULTIHADRON PRODUCTION CROSS SECTION DEDUCED AS SUM OF FOUR PION CHANNELS.


New Measurements with the Orsay electron-Positron Storage Ring of the Radiative Decay Modes of the phi-Meson

Cosme, G. ; Courau, A. ; Dudelzak, B. ; et al.
Phys.Lett.B 63 (1976) 352-356, 1976.
Inspire Record 99833 DOI 10.17182/hepdata.27640

The radiative decay models of the φ-meson have been studied: e + e − → φ → ηγ →3 γ ; e + e − → φ → π o γ →3 γ . Cross sections σ φ → ηγ →3 γ and σ φ → π o γ →3 γ have been measured at five energies in the φ-meson energy region and clearly show the φ-resonance in the ηγ → 3 γ mode as well as in the π o γ → 3 γ mode. From a Breit-Wigner fit to the experimental data the values of the branching ratios are deduced: B φ → ηγ = (1.5 ± 0.4) × 10 −2 ; B φ → π o γ = (1.4 ± 0.5) × 10 −3 .

1 data table

REMOVING RADIATIVE CORRECTIONS, THE PHI PEAK CROSS SECTIONS ARE 66 NB +- 25 PCT <ETA GAMMA> AND 6.5 NB +- 30 PCT <PI0 GAMMA>.


Evidence for an Interference Effect Between omega and phi Resonances in pi+ pi- pi0 Production with the Orsay Colliding-Beam Ring

Parrour, G. ; Cosme, G. ; Courau, A. ; et al.
Phys.Lett.B 63 (1976) 357-361, 1976.
Inspire Record 99834 DOI 10.17182/hepdata.27628

The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.

1 data table

EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.


Pi+ pi- pi0 and pi pi gamma production by e+ e- annihilation in the phi energy range with the orsay storage ring

Cosme, G. ; Jean-Marie, B. ; Jullian, S. ; et al.
Phys.Lett.B 48 (1974) 155-158, 1974.
Inspire Record 95375 DOI 10.17182/hepdata.28017

A large solid angle detector has been used to observe π + π − π o events produced at the φ energy by electron-positron collisions in the Orsay storage ring. Fitting our data with a Breit and Wigner curve, with a fixed width Γ = (3.8±0.4) MeV coming from K O S K O L analysis, we deduce σ e + e − → π + π − π O = (0.70±0.13) μ bat 2 E = Mφ . Using our measurements on the other φ decay modes we deduce ( φ → π + π − π o )/( φ → K o S K o L ) = 0.47±0.06 and ( φ → η o γ )/( φ → K o S K o L ) = 0.077±0.022. Assuming ( φ → K + K − )/( φ → K o S K o L ) = 1.60, we derive σ TOT = (4.7±0.4) μ b, Γ e + e − = (1.27±0.11 keV and g 2 o /4 π = 14.3±1.3 (without finite width correction). Furthermore (from the observation of the ππγ coplanar events) we put an upper limit to the mode e + e − → φ π + π − γ , Γ ( φ → π + π − γ ) ⩽ 0.007 Γ ( φ → Total ) with 90% C.L.

2 data tables

EXPERIMENTAL CROSS SECTIONS INCLUDING RADIATIVE EFFECTS.

FITTED PARTIAL AND TOTAL CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.


Omega production by e+ e- annihilation

Benaksas, D. ; Cosme, G. ; Jean-Marie, B. ; et al.
Phys.Lett.B 42 (1972) 507-510, 1972.
Inspire Record 84977 DOI 10.17182/hepdata.28178

A large solid angle detector has been used to observe π + π − π 0 events produced, at the ω energy, by electron-positron collisions in the ORSAY storage ring. From the ω excitation curve we have deduced: σ ( e + e − → ω 3 π ) = (180 ± 0.20) μ b, Γ = (9.1 ± 0.8) MeV and with B( ω → π + π − π 0 ) = 0.898 ± 0.045 we have calculated Γ e + e − = (0.76 ± 0. 08) keV and g 2 ω 4π = 18.4 ± 1.8 .

2 data tables

EXPERIMENTAL CROSS SECTION INCLUDING RADIATIVE EFFECTS.

FITTED CROSS SECTION AT OMEGA PEAK, RADIATIVELY CORRECTED.


pi+ pi- production by e+ e- annihilation in the rho energy range with the Orsay storage ring

Benaksas, D. ; Cosme, G. ; Jean-Marie, B. ; et al.
Phys.Lett.B 39 (1972) 289-293, 1972.
Inspire Record 73648 DOI 10.17182/hepdata.28321

A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π + π − excitation curve in the ϱ region we have deduced the amplitude and the phase of the ω-ϱ interference, and the ϱ resonance paramaters: M ϱ = (775.4±7.3) MeV, Γ ϱ = (149.6 ± 23.2) MeV, √ B ( ω → π + π − ) = 0.19 ± 0.05, φ = (85.7 ± 15.3) 0 , σ ( e + e − → ϱ ) = (1.00 ± 0.13) μ b at S = M ϱ 2 , B ( ϱ → e + e − = (4.1 ± 0.5) × 10 −5 , Γ ( ϱ → e + e − ) = (6.1 ± 0.7) keV, ( g ϱ 2 /4 π ) = 2.26 ± 0.25, ( g ϱππ 2 /4 π ) = 2.84 ± 0.50.

1 data table

STATISTICAL ERRORS ONLY. CROSS SECTION AT RHO0 PEAK IS 1.00 +- 0.13 MUB FROM FIT.


Measurement of the electron-Positron Annihilation Cross-Section Into pi+ pi- at the Energies 915-MeV, 990-MeV and 1076-MeV

Cosme, G. ; Courau, A. ; Dudelzak, B. ; et al.
LAL-1287, 1976.
Inspire Record 109771 DOI 10.17182/hepdata.38244

None

1 data table

No description provided.