Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Prompt and nonprompt J/$\psi$ production and nuclear modification in $p$Pb collisions at $\sqrt{s_{\text{NN}}}= 8.16$ TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett.B 774 (2017) 159-178, 2017.
Inspire Record 1606329 DOI 10.17182/hepdata.79799

The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.

16 data tables

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty

The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

More…

Test of lepton universality with $B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$ decays

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 08 (2017) 055, 2017.
Inspire Record 1599846 DOI 10.17182/hepdata.77815

A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.

2 data tables

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).