Search for pair production of third-generation leptoquarks decaying into a bottom quark and a $\tau$-lepton with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1075, 2023.
Inspire Record 2637935 DOI 10.17182/hepdata.145072

A search for pair-produced scalar or vector leptoquarks decaying into a $b$-quark and a $\tau$-lepton is presented using the full LHC Run 2 (2015-2018) data sample of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to extract the signals. No significant deviations from the Standard Model expectation are observed and 95% confidence-level upper limits on the production cross-section are derived as a function of leptoquark mass and branching ratio $B$ into a $\tau$-lepton and $b$-quark. For scalar leptoquarks, masses below 1460 GeV are excluded assuming $B=100$%, while for vector leptoquarks the corresponding limit is 1650 GeV (1910 GeV) in the minimal-coupling (Yang-Mills) scenario.

8 data tables

Acceptance $\times$ efficiency for the $\tau_\text{lep}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

Acceptance $\times$ efficiency for the $\tau_\text{had}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

The observed and expected 95% CL upper limits on the scalar LQ pair production cross-sections assuming B = 1 as a function of m$_\text{LQ}$.

More…

Search for a light charged Higgs boson in $t \rightarrow H^{\pm}b$ decays, with $H^{\pm} \rightarrow cb$, in the lepton+jets final state in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 09 (2023) 004, 2023.
Inspire Record 2635801 DOI 10.17182/hepdata.135457

A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.

4 data tables

The observed 95% CL upper limits on $\mathscr{B}=\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ as a function of $m_{H^{\pm}}$ and the expectation (dashed) under the background-only hypothesis. The inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The exclusion limits are presented for $m_{H^{\pm}}$ between 60 and 160 GeV with 10 GeV $m_{H^{\pm}}$ spacing and linear interpolation between adjacent mass points. Superimposed on the upper limits, the predictions from the 3HDM are shown, corresponding to three benchmark values for the parameters $X$, $Y$, and $Z$

Pre-fit event yields in each of the nine analysis regions. The $H^{\pm}$ signal yields for $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are normalised to $\mathscr{B}_{\mathrm{ref}}=1\%$. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among processes resulting from the data-based $t\bar{t}$ correction procedure.

Post-fit yields in each of the nine analysis regions considered. The total prediction is shown after the fit to data under the signal-plus-background hypothesis assuming $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV. The predicted yileds for the $H^{\pm}$ signal with $m_{H^{\pm}}=70$ GeV are also shown for reference. The best fit-values of $\mathscr{B}$ for $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are 0.16% and 0.07% respectively. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among nuisance parameters and among processes.

More…

Version 2
Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 166, 2023.
Inspire Record 2631088 DOI 10.17182/hepdata.135719

This paper presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Leptonic ($\tau \rightarrow \ell \nu_\ell \nu_\tau$) and hadronic ($\tau \rightarrow $ hadrons $ \nu_\tau$) decays of the $\tau$-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, $\mathcal{B}(H\rightarrow e\tau)<0.20\%$ (0.12%) and $\mathcal{B}(H\rightarrow \mu\tau)<0.18\%$ (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential $H \rightarrow e\tau$ and $H \rightarrow\mu\tau$ signals. The best-fit branching ratio difference, $\mathcal{B}(H\rightarrow \mu\tau)- \mathcal{B}(H\rightarrow e\tau)$, measured with the Symmetry method in the channel where the $\tau$-lepton decays to leptons, is (0.25 $\pm$ 0.10)%, compatible with a value of zero within 2.5$\sigma$.

40 data tables

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing best-fit values of the LFV branching ratios of the Higgs boson $\hat{B}$($H\to e\tau$). The results from standalone channel/categories fits are compared with the results of the combined fit.

More…

Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Observation of single-top-quark production in association with a photon using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 181901, 2023.
Inspire Record 2628980 DOI 10.17182/hepdata.134244

This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.

26 data tables

This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.

Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.

Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.

More…

Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 085, 2023.
Inspire Record 2625697 DOI 10.17182/hepdata.135073

Measurements of transverse energy$-$energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 $\mbox{fb\(^{-1}\)}$ of proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers $Q$. The strong coupling constant $\alpha_s$ is extracted differentially as a function of $Q$, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy$-$energy correlation distributions across different kinematic regions yields a value of $\alpha_\mathrm{s}(m_Z) = 0.1175 \pm 0.0006 \mbox{ (exp.)} ^{+0.0034}_{-0.0017} \mbox{ (theo.)}$, while the global fit to the asymmetry distributions yields $\alpha_{\mathrm{s}}(m_Z) = 0.1185 \pm 0.0009 \mbox{ (exp.)} ^{+0.0025}_{-0.0012} \mbox{ (theo.)}$.

50 data tables

Particle-level TEEC results

Particle-level TEEC results for the first HT2 bin

Particle-level TEEC results for the second HT2 bin

More…

Version 2
Search for a new Z' gauge boson in $4\mu$ events with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 090, 2023.
Inspire Record 2625676 DOI 10.17182/hepdata.130818

This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.

58 data tables

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

The $Z'$ signal event selection efficiencies compared to the events passing the previous cut level for several representative mass points. The overall signal efficiencies are the products of the 4$\mu$ MC filter and the combined event selection efficiencies.

More…

Search for a new scalar resonance in flavour-changing neutral-current top-quark decays $t \rightarrow qX$ ($q=u,c$), with $X \rightarrow b\bar{b}$, in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 199, 2023.
Inspire Record 2621899 DOI 10.17182/hepdata.132907

A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle $X$ decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to $qX$, with $X \rightarrow b\bar{b}$, and the other top quark decays according to the Standard Model, with the $W$ boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from $b$-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction $\mathcal{B}$($t \rightarrow uX$) and between 0.018% and 0.078% for the branching fraction $\mathcal{B}$($t \rightarrow cX$), for masses of the scalar particle $X$ between 20 and 160 GeV.

8 data tables

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow cX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$) and $\mathcal{B}$($t \rightarrow cH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$).

More…

Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 033, 2023.
Inspire Record 2622249 DOI 10.17182/hepdata.140938

A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.

10 data tables

Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.

Definition of the fiducial phase space at particle level with the light lepton candidates $(\ell=e,\mu)$, jets ($j$) and invariant mass of the opposite sign same flavour lepton pair ($m_{OSSF}^{ll}$).

Correlation matrix between the Normalisation Factors and the Nuisance Parameters (NP) in the fit using using both statistical and systematic uncertainties to data in all analysis regions.

More…

Version 2
Measurements of $Z\gamma+$jets differential cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 072, 2023.
Inspire Record 2614196 DOI 10.17182/hepdata.135460

Differential cross-section measurements of $Z\gamma$ production in association with hadronic jets are presented, using the full 139 fb$^{-1}$ dataset of $\sqrt{s}=13$ TeV proton-proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the $Z$ boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLO$_\text{PS}$, as well as next-to-leading-order predictions from MadGraph5_aMC@NLO and Sherpa.

100 data tables

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

More…

Measurement of the $CP$ properties of Higgs boson interactions with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 563, 2023.
Inspire Record 2613280 DOI 10.17182/hepdata.131601

A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

5 data tables

Observed 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Expected 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Observed 2-D likelihood scan of the signal strength $\mu_{\tau\tau}$ versus the $CP$-mixing angle $\phi_{\tau}$.

More…

Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 719, 2023.
Inspire Record 2613270 DOI 10.17182/hepdata.137656

A search for pair-produced vector-like quarks using events with exactly one lepton ($e$ or $\mu$), at least four jets including at least one $b$-tagged jet, and large missing transverse momentum is presented. Data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb$^{-1}$, are analysed. Vector-like partners $T$ and $B$ of the top and bottom quarks are considered, as is a vector-like $X$ with charge +5/3, assuming their decay into a $W$, $Z$, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section of $T$ and $B$ quark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 TeV assuming mass-degenerate VLQs and branching ratios corresponding to the weak-isospin doublet model, and 1.47 TeV (1.46 TeV) for exclusive $T \rightarrow Zt$ ($B/X \rightarrow Wt$) decays. In addition, lower limits on the $T$ and $B$ quark masses are derived for all possible branching ratios.

10 data tables

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $T\bar{T}$ and $\mathcal{B}(T\rightarrow Zt) = 100$%.

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $B\bar{B}$ and $\mathcal{B}(B\rightarrow Wt) = 100$%.

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $T\bar{T}$ in the singlet model.

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Version 2
Search for supersymmetry in final states with missing transverse momentum and three or more $b$-jets in 139 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 561, 2023.
Inspire Record 2182381 DOI 10.17182/hepdata.95928

A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.

276 data tables

A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

More…

Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 605, 2023.
Inspire Record 2181753 DOI 10.17182/hepdata.138987

A search for pair production of doubly charged Higgs bosons ($H^{\pm \pm}$), each decaying into a pair of prompt, isolated, highly energetic leptons with the same electric charge, is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. This analysis focuses on same-charge leptonic decays, $H^{\pm \pm} \rightarrow \ell^{\pm} \ell^{\prime \pm}$ where $\ell, \ell^\prime=e, \mu, \tau$, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding limits on the production cross-section and consequently a lower limit on $m(H^{\pm \pm})$ are derived at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, $\mathcal{B}(H^{\pm \pm} \rightarrow e^\pm e^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow e^\pm \mu^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \mu^\pm \mu^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow e^\pm \tau^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \mu^\pm \tau^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \tau^\pm \tau^\pm) = 1/6$, the observed lower limit on the mass of a doubly charged Higgs boson is 1080 GeV within the left-right symmetric type-II seesaw model, which is an improvement over previous limits. Additionally, a lower limit of $m(H^{\pm \pm})$ = 900 GeV is obtained in the context of the Zee-Babu neutrino mass model.

12 data tables

LO, NLO cross-sections and K-factors for the pair-production of doubly charged Higgs bosons in pp collisions at $\sqrt{s}$ = 13 TeV. The K-factors (K=$\sigma_{NLO}/\sigma_{LO}$) are identical for $H^{\pm\pm}_L$, $H^{\pm\pm}_R$, and $k^{\pm\pm}$. The values are calculated using the NNPDF3.1NLO and NNPDF2.3LO PDF sets.

Observed (solid line) and expected (dashed line) 95% CL upper limits on the $H^{\pm\pm}$ pair production cross-section as a function of $m(H^{\pm\pm})$ resulting from the combination of all analysis channels, assuming $\sum_{\ell \ell^\prime} \mathcal{B}(H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\prime \pm})=100%$, where $\ell, \ell^\prime = e, \mu, \tau$.

Distribution of $m(e^{\pm},e^{\pm})_{\mathrm{lead}}$ in the electron-electron signal region after the background-only fit.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

16 data tables

Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Comparison between data and SM predictions for the meff distributions in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.

More…

Search for $t\bar tH/A \rightarrow t\bar tt\bar t$ production in the multilepton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 203, 2023.
Inspire Record 2175533 DOI 10.17182/hepdata.135458

A search for a new heavy scalar or pseudo-scalar Higgs boson ($H/A$) produced in association with a pair of top quarks, with the Higgs boson decaying into a pair of top quarks ($H/A\rightarrow t\bar{t}$) is reported. The search targets a final state with exactly two leptons with same-sign electric charges or at least three leptons. The analysed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Two multivariate classifiers are used to separate the signal from the background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of a type-II two-Higgs-doublet model. The observed (expected) upper limits at 95% confidence level on the $t\bar{t}H/A$ production cross-section times the branching ratio of $H/A\rightarrow t\bar{t}$ range between 14 (10) fb and 6 (5) fb for a heavy Higgs boson with mass between 400 GeV and 1000 GeV, respectively. Assuming that only one particle, either the scalar $H$ or the pseudo-scalar $A$, contributes to the $t\bar{t}t\bar{t}$ final state, values of $\tan\beta$ below 1.2 or 0.5 are excluded for a mass of 400 GeV or 1000 GeV, respectively. These exclusion ranges increase to $\tan\beta$ below 1.6 or 0.6 when both particles are considered.

23 data tables

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the sum of the leading four jets b-tagging scores.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the number of jets.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the BSM pBDT: SM BDT.

More…

Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 188, 2023.
Inspire Record 2163275 DOI 10.17182/hepdata.135703

A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015-2018) data set of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. Scalar leptoquarks with charge -(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e are considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation ($e, \mu, \nu$) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recent B-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models.

27 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>95% CL limits on the production cross-section for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> </ul> <b>Product of signal acceptance and efficiency in the training region for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> </ul> <b>Cut-flow for:</b> <ul> <li><a href="135703?version=1&table=Scalar%20LQs%20cut-flow">scalar LQs</a> <li><a href="135703?version=1&table=Vector%20LQs%20cut-flow">vector LQs</a> </ul>

Observed 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

Expected 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

More…

A search for new resonances in multiple final states with a high transverse momentum $Z$ boson in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 036, 2023.
Inspire Record 2158974 DOI 10.17182/hepdata.132793

A generic search for resonances is performed with events containing a $Z$ boson with transverse momentum greater than 100 GeV, decaying into $e^+e^-$ or $\mu^+\mu^-$. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb$^{-1}$. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode $W'\to ZW \to \ell\ell qq$.

62 data tables

Results of applying the BH algorithm to the mass spectra in the leading small-R jet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading bjet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading large-R jet category, using the fitted background estimations from the initial step

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Search for resonant and non-resonant Higgs boson pair production in the $b\bar b\tau^+\tau^-$ decay channel using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 040, 2023.
Inspire Record 2155171 DOI 10.17182/hepdata.130794

A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.

51 data tables

Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.

Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis

Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 518, 2023.
Inspire Record 2152933 DOI 10.17182/hepdata.135459

A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.

149 data tables

Binning used for the measured $\sum_{n_{\text{ch}}} p_{\text{T}}$ in bins of $n_\text{ch}$ observable.

Event yields obtained after the event selection. The expected event yields from $t\bar{t}$ production and the various background processes are compared with the observed event yield. The fractional contributions from $t\bar{t}$ production and the background processes to the expected event yield is given in %. The processes labelled by `Others' include production of $Z$+jets and diboson background events. The uncertainties include the MC statistical uncertainty and the normalisation uncertainty.

Summary of the estimated pile-up scale factors $c_{\text{PU}}$, parameterisd in $\mu$ and $n_{\text{trk,out}}$. All values have a statistical precision of 0.01.

More…

Measurement of the top-quark mass using a leptonic invariant mass in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 019, 2023.
Inspire Record 2145514 DOI 10.17182/hepdata.91999

A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.

4 data tables

Top mass measurement result.

List of all the individual sources of systematic uncertainty considered in the analysis. The individual sources, each corresponding to an independent nuisance parameter in the fit, are grouped into categories, as indicated in the first column. The second column shows the impact of each of the individual sources on the measurement, obtained as the shift on the top mass induced by a positive shift of the each of the nuisance parameters by its post-fit uncertainty. Sources for which no impact is indicated are neglected in the fit procedure as their impact on the total prediction is negligible in any of the bins. The last column shows the statistical uncertainty in each of the reported numbers as estimated with the bootstrap method.

Ranking, from top to bottom, of the main systematic uncertainties (excluding recoil) showing the pulls and the impact of the systematic uncertainties on the top mass, from the combined opposite sign (OS) and same sign (SS) binned-template profile likelihood fit to data. The OS or SS refers to the charge signs of the primary lepton and the soft muon. The gamma parameters are NPs used to describe the effect of the limited statistics of the sample.

More…

Measurement of electroweak $Z(\nu\bar{\nu})\gamma jj$ production and limits on anomalous quartic gauge couplings in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 082, 2023.
Inspire Record 2142343 DOI 10.17182/hepdata.127924

The electroweak production of $Z(\nu\bar{\nu})\gamma$ in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial $Z(\nu\bar{\nu})\gamma jj$ cross section for electroweak production is measured to be 0.77$^{+0.34}_{-0.30}$ fb and is consistent with the Standard Model prediction. Evidence of electroweak $Z(\nu\bar{\nu})\gamma jj$ production is found with an observed significance of 3.2$\sigma$ for the background-only hypothesis, compared with an expected significance of 3.7$\sigma$. The combination of this result with the previously published ATLAS observation of electroweak $Z(\nu\bar{\nu})\gamma jj$ production yields an observed (expected) signal significance of 6.3$\sigma$ (6.6$\sigma$). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.

21 data tables

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_s$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ EWK process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_{s}$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ QCD process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

The $m_{jj}$ distributions for the CRs and the BDT classifier response distribution for the SR after the fit in all regions. The dashed line shows the total background distribution before the fit. The vertical error bars on the data points correspond to the data's statistical uncertainty. Overflows are included in the last bin. The uncertainty band corresponds to the combination of the MC statistical uncertainty and systematic uncertainties obtained in the fit.

More…

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=1&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=1&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=1&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of $\tau$-leptons in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 155, 2023.
Inspire Record 2141572 DOI 10.17182/hepdata.130958

A search for flavour-changing neutral current (FCNC) $tqH$ interactions involving a top quark, another up-type quark ($q=u$, $c$), and a Standard Model (SM) Higgs boson decaying into a $\tau$-lepton pair ($H\rightarrow \tau^+\tau^-$) is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV that corresponds to an integrated luminosity of 139 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson ($pp\rightarrow tH$), and top quark pair production in which one of the top quarks decays into $Wb$ and the other decays into $qH$ through the FCNC interactions. The search selects events with two hadronically decaying $\tau$-lepton candidates ($\tau_{\text{had}}$) or at least one $\tau_{\text{had}}$ with an additional lepton ($e$, $\mu$), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3$\sigma$ above the expected SM background, and 95% CL upper limits on the $t\to qH$ branching ratios are derived. The observed (expected) 95% CL upper limits set on the $t\to cH$ and $t\to uH$ branching ratios are $9.4 \times 10^{-4}$ $(4.8^{+2.2}_{-1.4}\times 10^{-4})$ and $6.9\times 10^{-4}$ $(3.5^{+1.5}_{-1.0}\times 10^{-4})$, respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective $tqH$ couplings are $C_{c\phi} <1.35$ $(0.97)$ and $C_{u\phi} <1.16$ $(0.82)$.

54 data tables

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$ region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-1j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

More…

Version 2
Searches for exclusive Higgs and $Z$ boson decays into a vector quarkonium state and a photon using $139$ fb$^{-1}$ of ATLAS $\sqrt{s}=13$ TeV proton$-$proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 781, 2023.
Inspire Record 2132750 DOI 10.17182/hepdata.132657

Searches for the exclusive decays of Higgs and $Z$ bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^- \gamma$ final state with a proton$-$proton collision data sample corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S,2S,3S) \gamma$ are found to be $2.1\times10^{-4}$, $10.9\times10^{-4}$, and $(2.6,4.4,3.5)\times10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the $Z$ boson decays are $1.2\times10^{-6}$, $2.3\times10^{-6}$, and $(1.0,1.2,2.3)\times10^{-6}$.

4 data tables

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Expected, with the corresponding $\pm 1\sigma$ intervals, and observed 95% CL branching fraction upper limits for the Higgs and $Z$ boson decays into a quarkonium state and a photon. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross section times branching fraction $\sigma\times\mathcal{B}$ are also shown.

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Version 2
Search for resonant $WZ \rightarrow \ell\nu \ell^{\prime}\ell^{\prime}$ production in proton$-$proton collisions at $\mathbf{\sqrt{s} = 13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 633, 2023.
Inspire Record 2107940 DOI 10.17182/hepdata.129151

A search for a $WZ$ resonance, in the fully leptonic final state (electrons and muons), is performed using 139 fb$^{-1}$ of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi$-$Machacek model, produced by $WZ$ fusion, and of a Heavy Vector Triplet, with the resonance produced by $WZ$ fusion or the Drell$-$Yan process. No significant excess over the Standard Model predictions is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes.

36 data tables

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the ANN-based VBF signal region. The background predictions are obtained through a background-only simultaneous fit to the VBF signal region and the WZ-QCD and ZZ VBF control regions. The yields are normalized to the bin width

More…

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Akerlof, C.W. ; et al.
Phys.Rev.Lett. 131 (2023) 041002, 2023.
Inspire Record 2107834 DOI 10.17182/hepdata.144760

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H\to\gamma\gamma$ channel using $139$ fb$^{-1}$ of $pp$ collision data with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 088, 2023.
Inspire Record 2104770 DOI 10.17182/hepdata.129799

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

13 data tables

Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.

Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.

Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.

More…

Version 2
Search for heavy resonances decaying into a $Z$ or $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $139~$fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 016, 2023.
Inspire Record 2104697 DOI 10.17182/hepdata.111122

This article presents a search for new resonances decaying into a $Z$ or $W$ boson and a 125 GeV Higgs boson $h$, and it targets the $\nu\bar{\nu}b\bar{b}$, $\ell^+\ell^-b\bar{b}$, or $\ell^{\pm}{\nu}b\bar{b}$ final states, where $\ell=e$ or $\mu$, in proton-proton collisions at $\sqrt{s}=13$ TeV. The data used correspond to a total integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of $Zh$ or $Wh$ candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.

132 data tables

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> vvbb/cc signals in the 0-lepton channel.

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> vvbb/cc signals in the 0-lepton channel.

Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> llbb/cc signals in the 2-lepton channel.

More…

Measurements of $W^{+}W^{-}$ production in decay topologies inspired by searches for electroweak supersymmetry

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 718, 2023.
Inspire Record 2103950 DOI 10.17182/hepdata.132115

This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

30 data tables

Signal region detector-level distribution for the observable $|y_{e\mu}|$.

Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.

Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.

More…

Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in $pp$ collisions at $\sqrt{s}=13$~TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 153, 2023.
Inspire Record 2100410 DOI 10.17182/hepdata.131523

A search for light long-lived neutral particles with masses in the $O$(MeV-GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon-gluon fusion or in association with a $W$ boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length $c\tau$ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV.

52 data tables

The reconstruction efficiency for &mu;DPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a &gamma;<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for &gamma;<sub>d</sub> with 0&lt;|&eta;|&lt;1 as a function of the transverse decay length L<sub>xy</sub>.

The reconstruction efficiency for &mu;DPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a &gamma;<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for &gamma;<sub>d</sub> with 0&lt;|&eta;|&lt;1 as a function of the &gamma;<sub>d</sub> transverse momentum in events where the &gamma;<sub>d</sub> L<sub>xy</sub> is below 6&nbsp;m.

The reconstruction efficiency for caloDPJs produced by the decay of &gamma;<sub>d</sub> into e<sup>+</sup>e<sup>-</sup> or qq&#772;. The reconstruction efficiency is shown for &gamma;<sub>d</sub> with 0&lt;|&eta;|&lt;1.1 as a function of the transverse decay length L<sub>xy</sub>. The efficiency drop at 2.5&nbsp;m corresponds to the end of the first layer of the HCAL.

More…

Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

8 data tables

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Measurement of antiproton production from antihyperon decays in pHe collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S. W. ; Beteta, C.Abellan ; et al.
Eur.Phys.J.C 83 (2023) 543, 2023.
Inspire Record 2084295 DOI 10.17182/hepdata.130780

The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110 GeV/c. The dominant antihyperon contribution, namely $\bar{\Lambda} \to \bar{p} \pi^+$ decays from promptly produced $\bar{\Lambda}$ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models.

2 data tables

Ratio of the antihyperon decays to prompt antiproton production (R_Hbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.

Ratio of the Lbar decays to prompt antiproton production (R_Lbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.


Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s} = 13~\text{TeV}$ using the ATLAS experiment and the full Run 2 dataset

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 158, 2023.
Inspire Record 2080541 DOI 10.17182/hepdata.127994

This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

112 data tables

This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>

Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

More…

Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

78 data tables

Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

More…

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

1011 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> NLEP = 0, E or MU, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 1.0, 350 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> NJETS &gt;= 1, R = 1.0, 500 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> T1, MIN ( ABS ( M - 172.5 GeV ) ), candidate JETS with PT &gt; 500 GeV <li> T2, MIN ( ABS ( M - 172.5 GeV ) ), remaining candidate JETS with PT &gt; 350 GeV <li> T1 and T2, 122.5 GeV &lt; M &lt; 222.5 GeV, ghost-matched B-HAD with PT &gt; 5 GeV </ul><br/> <i>Parton level:</i> <ul> <li> PT_T1 &gt; 500 GeV, PT_T2 &gt; 350 GeV </ul><br/> <b>Particle level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 1">Table 1</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 2">Table 2</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 3">Table 3</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 4">Table 4</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 5">Table 5</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 6">Table 6</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 7">Table 7</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 8">Table 8</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 9">Table 9</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 10">Table 10</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 11">Table 11</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 12">Table 12</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 13">Table 13</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 14">Table 14</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 15">Table 15</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 16">Table 16</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 74">Table 74</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 75">Table 75</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 76">Table 76</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 77">Table 77</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 78">Table 78</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 79">Table 79</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 80">Table 80</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 81">Table 81</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 82">Table 82</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 83">Table 83</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 84">Table 84</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 85">Table 85</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 86">Table 86</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 87">Table 87</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 88">Table 88</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 291">Table 291</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 292">Table 292</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 293">Table 293</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 294">Table 294</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 295">Table 295</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 296">Table 296</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 297">Table 297</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 298">Table 298</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 299">Table 299</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 300">Table 300</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 301">Table 301</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 302">Table 302</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 303">Table 303</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 304">Table 304</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 305">Table 305</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 471">Table 471</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 472">Table 472</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 473">Table 473</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 474">Table 474</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 475">Table 475</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 476">Table 476</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 477">Table 477</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 478">Table 478</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 479">Table 479</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 480">Table 480</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 481">Table 481</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 482">Table 482</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 483">Table 483</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 484">Table 484</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 485">Table 485</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 17">Table 17</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 18">Table 18</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 19">Table 19</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 20">Table 20</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 21">Table 21</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 22">Table 22</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 23">Table 23</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 24">Table 24</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 25">Table 25</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 26">Table 26</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 27">Table 27</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 28">Table 28</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 29">Table 29</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 30">Table 30</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 31">Table 31</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 32">Table 32</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 33">Table 33</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 34">Table 34</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 35">Table 35</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 36">Table 36</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 37">Table 37</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 38">Table 38</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 39">Table 39</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 40">Table 40</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 41">Table 41</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 42">Table 42</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 43">Table 43</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 44">Table 44</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 45">Table 45</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 46">Table 46</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 47">Table 47</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 48">Table 48</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 49">Table 49</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 50">Table 50</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 51">Table 51</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 52">Table 52</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 53">Table 53</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 54">Table 54</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 55">Table 55</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 56">Table 56</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 57">Table 57</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 58">Table 58</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 59">Table 59</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 60">Table 60</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 61">Table 61</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 62">Table 62</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 63">Table 63</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 64">Table 64</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 89">Table 89</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 90">Table 90</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 91">Table 91</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 92">Table 92</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 93">Table 93</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 94">Table 94</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 95">Table 95</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 96">Table 96</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 97">Table 97</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 98">Table 98</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 99">Table 99</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 100">Table 100</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 101">Table 101</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 102">Table 102</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 103">Table 103</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 104">Table 104</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 105">Table 105</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 106">Table 106</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 107">Table 107</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 108">Table 108</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 109">Table 109</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 110">Table 110</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 111">Table 111</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 112">Table 112</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 113">Table 113</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 114">Table 114</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 115">Table 115</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 116">Table 116</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 117">Table 117</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 118">Table 118</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 119">Table 119</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 120">Table 120</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 121">Table 121</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 122">Table 122</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 123">Table 123</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 124">Table 124</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 125">Table 125</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 126">Table 126</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 127">Table 127</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 128">Table 128</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 129">Table 129</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 130">Table 130</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 131">Table 131</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 132">Table 132</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 133">Table 133</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 134">Table 134</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 135">Table 135</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 136">Table 136</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 306">Table 306</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 307">Table 307</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 308">Table 308</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 309">Table 309</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 310">Table 310</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 311">Table 311</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 312">Table 312</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 313">Table 313</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 314">Table 314</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 315">Table 315</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 316">Table 316</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 317">Table 317</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 318">Table 318</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 319">Table 319</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 320">Table 320</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 321">Table 321</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 322">Table 322</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 323">Table 323</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 324">Table 324</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 325">Table 325</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 326">Table 326</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 327">Table 327</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 328">Table 328</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 329">Table 329</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 330">Table 330</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 331">Table 331</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 332">Table 332</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 333">Table 333</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 334">Table 334</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 335">Table 335</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 336">Table 336</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 337">Table 337</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 338">Table 338</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 339">Table 339</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 340">Table 340</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 341">Table 341</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 342">Table 342</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 343">Table 343</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 344">Table 344</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 345">Table 345</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 346">Table 346</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 347">Table 347</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 348">Table 348</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 349">Table 349</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 350">Table 350</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 351">Table 351</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 352">Table 352</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 353">Table 353</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 354">Table 354</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 355">Table 355</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 356">Table 356</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 357">Table 357</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 358">Table 358</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 359">Table 359</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 360">Table 360</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 361">Table 361</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 362">Table 362</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 363">Table 363</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 364">Table 364</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 365">Table 365</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 366">Table 366</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 367">Table 367</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 368">Table 368</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 369">Table 369</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 370">Table 370</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 371">Table 371</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 372">Table 372</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 373">Table 373</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 374">Table 374</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 375">Table 375</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 376">Table 376</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 377">Table 377</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 378">Table 378</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 379">Table 379</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 380">Table 380</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 381">Table 381</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 382">Table 382</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 383">Table 383</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 384">Table 384</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 385">Table 385</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 386">Table 386</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 387">Table 387</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 388">Table 388</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 389">Table 389</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 390">Table 390</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 391">Table 391</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 392">Table 392</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 393">Table 393</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 394">Table 394</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 395">Table 395</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 396">Table 396</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 397">Table 397</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 398">Table 398</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 399">Table 399</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 400">Table 400</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 401">Table 401</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 402">Table 402</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 403">Table 403</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 404">Table 404</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 405">Table 405</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 406">Table 406</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 407">Table 407</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 408">Table 408</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 409">Table 409</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 410">Table 410</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 411">Table 411</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 412">Table 412</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 413">Table 413</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 414">Table 414</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 415">Table 415</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 416">Table 416</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 417">Table 417</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 418">Table 418</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 419">Table 419</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 420">Table 420</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 421">Table 421</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 422">Table 422</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 423">Table 423</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 424">Table 424</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 425">Table 425</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 486">Table 486</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 487">Table 487</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 488">Table 488</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 489">Table 489</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 490">Table 490</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 491">Table 491</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 492">Table 492</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 493">Table 493</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 494">Table 494</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 495">Table 495</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 496">Table 496</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 497">Table 497</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 498">Table 498</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 499">Table 499</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 500">Table 500</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 501">Table 501</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 502">Table 502</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 503">Table 503</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 504">Table 504</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 505">Table 505</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 506">Table 506</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 507">Table 507</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 508">Table 508</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 509">Table 509</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 510">Table 510</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 511">Table 511</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 512">Table 512</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 513">Table 513</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 514">Table 514</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 515">Table 515</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 516">Table 516</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 517">Table 517</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 518">Table 518</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 519">Table 519</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 520">Table 520</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 521">Table 521</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 522">Table 522</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 523">Table 523</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 524">Table 524</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 525">Table 525</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 526">Table 526</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 527">Table 527</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 528">Table 528</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 529">Table 529</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 530">Table 530</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 531">Table 531</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 532">Table 532</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 533">Table 533</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 534">Table 534</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 535">Table 535</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 536">Table 536</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 537">Table 537</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 538">Table 538</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 539">Table 539</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 540">Table 540</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 541">Table 541</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 542">Table 542</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 543">Table 543</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 544">Table 544</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 545">Table 545</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 546">Table 546</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 547">Table 547</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 548">Table 548</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 549">Table 549</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 550">Table 550</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 551">Table 551</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 552">Table 552</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 553">Table 553</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 554">Table 554</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 555">Table 555</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 556">Table 556</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 557">Table 557</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 558">Table 558</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 559">Table 559</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 560">Table 560</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 561">Table 561</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 562">Table 562</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 563">Table 563</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 564">Table 564</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 565">Table 565</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 566">Table 566</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 567">Table 567</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 568">Table 568</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 569">Table 569</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 570">Table 570</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 571">Table 571</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 572">Table 572</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 573">Table 573</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 574">Table 574</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 575">Table 575</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 576">Table 576</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 577">Table 577</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 578">Table 578</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 579">Table 579</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 580">Table 580</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 581">Table 581</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 582">Table 582</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 583">Table 583</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 584">Table 584</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 585">Table 585</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 586">Table 586</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 587">Table 587</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 588">Table 588</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 589">Table 589</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 590">Table 590</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 591">Table 591</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 592">Table 592</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 593">Table 593</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 594">Table 594</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 595">Table 595</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 596">Table 596</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 597">Table 597</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 598">Table 598</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 599">Table 599</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 600">Table 600</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 601">Table 601</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 602">Table 602</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 603">Table 603</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 604">Table 604</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 605">Table 605</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 65">Table 65</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 66">Table 66</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 67">Table 67</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 68">Table 68</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 69">Table 69</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 70">Table 70</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 71">Table 71</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 72">Table 72</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 73">Table 73</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 137">Table 137</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 138">Table 138</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 139">Table 139</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 140">Table 140</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 141">Table 141</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 142">Table 142</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 143">Table 143</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 144">Table 144</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 145">Table 145</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 426">Table 426</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 427">Table 427</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 428">Table 428</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 429">Table 429</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 430">Table 430</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 431">Table 431</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 432">Table 432</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 433">Table 433</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 434">Table 434</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 435">Table 435</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 436">Table 436</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 437">Table 437</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 438">Table 438</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 439">Table 439</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 440">Table 440</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 441">Table 441</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 442">Table 442</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 443">Table 443</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 444">Table 444</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 445">Table 445</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 446">Table 446</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 447">Table 447</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 448">Table 448</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 449">Table 449</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 450">Table 450</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 451">Table 451</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 452">Table 452</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 453">Table 453</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 454">Table 454</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 455">Table 455</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 456">Table 456</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 457">Table 457</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 458">Table 458</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 459">Table 459</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 460">Table 460</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 461">Table 461</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 462">Table 462</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 463">Table 463</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 464">Table 464</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 465">Table 465</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 466">Table 466</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 467">Table 467</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 468">Table 468</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 469">Table 469</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 470">Table 470</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 606">Table 606</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 607">Table 607</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 608">Table 608</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 609">Table 609</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 610">Table 610</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 611">Table 611</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 612">Table 612</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 613">Table 613</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 614">Table 614</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 615">Table 615</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 616">Table 616</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 617">Table 617</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 618">Table 618</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 619">Table 619</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 620">Table 620</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 621">Table 621</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 622">Table 622</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 623">Table 623</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 624">Table 624</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 625">Table 625</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 626">Table 626</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 627">Table 627</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 628">Table 628</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 629">Table 629</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 630">Table 630</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 631">Table 631</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 632">Table 632</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 633">Table 633</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 634">Table 634</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 635">Table 635</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 636">Table 636</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 637">Table 637</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 638">Table 638</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 639">Table 639</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 640">Table 640</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 641">Table 641</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 642">Table 642</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 643">Table 643</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 644">Table 644</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 645">Table 645</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 646">Table 646</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 647">Table 647</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 648">Table 648</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 649">Table 649</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 650">Table 650</a>) </ul><br/> <b>Parton level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 146">Table 146</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 147">Table 147</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 148">Table 148</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 149">Table 149</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 150">Table 150</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 151">Table 151</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 152">Table 152</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 153">Table 153</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 154">Table 154</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 155">Table 155</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 156">Table 156</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 157">Table 157</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 158">Table 158</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 159">Table 159</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 160">Table 160</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 161">Table 161</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 219">Table 219</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 220">Table 220</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 221">Table 221</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 222">Table 222</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 223">Table 223</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 224">Table 224</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 225">Table 225</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 226">Table 226</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 227">Table 227</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 228">Table 228</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 229">Table 229</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 230">Table 230</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 231">Table 231</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 232">Table 232</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 233">Table 233</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 651">Table 651</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 652">Table 652</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 653">Table 653</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 654">Table 654</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 655">Table 655</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 656">Table 656</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 657">Table 657</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 658">Table 658</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 659">Table 659</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 660">Table 660</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 661">Table 661</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 662">Table 662</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 663">Table 663</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 664">Table 664</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 665">Table 665</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 831">Table 831</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 832">Table 832</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 833">Table 833</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 834">Table 834</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 835">Table 835</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 836">Table 836</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 837">Table 837</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 838">Table 838</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 839">Table 839</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 840">Table 840</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 841">Table 841</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 842">Table 842</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 843">Table 843</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 844">Table 844</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 845">Table 845</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 162">Table 162</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 163">Table 163</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 164">Table 164</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 165">Table 165</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 166">Table 166</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 167">Table 167</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 168">Table 168</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 169">Table 169</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 170">Table 170</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 171">Table 171</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 172">Table 172</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 173">Table 173</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 174">Table 174</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 175">Table 175</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 176">Table 176</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 177">Table 177</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 178">Table 178</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 179">Table 179</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 180">Table 180</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 181">Table 181</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 182">Table 182</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 183">Table 183</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 184">Table 184</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 185">Table 185</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 186">Table 186</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 187">Table 187</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 188">Table 188</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 189">Table 189</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 190">Table 190</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 191">Table 191</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 192">Table 192</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 193">Table 193</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 194">Table 194</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 195">Table 195</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 196">Table 196</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 197">Table 197</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 198">Table 198</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 199">Table 199</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 200">Table 200</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 201">Table 201</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 202">Table 202</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 203">Table 203</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 204">Table 204</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 205">Table 205</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 206">Table 206</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 207">Table 207</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 208">Table 208</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 209">Table 209</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 234">Table 234</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 235">Table 235</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 236">Table 236</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 237">Table 237</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 238">Table 238</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 239">Table 239</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 240">Table 240</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 241">Table 241</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 242">Table 242</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 243">Table 243</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 244">Table 244</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 245">Table 245</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 246">Table 246</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 247">Table 247</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 248">Table 248</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 249">Table 249</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 250">Table 250</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 251">Table 251</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 252">Table 252</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 253">Table 253</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 254">Table 254</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 255">Table 255</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 256">Table 256</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 257">Table 257</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 258">Table 258</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 259">Table 259</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 260">Table 260</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 261">Table 261</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 262">Table 262</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 263">Table 263</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 264">Table 264</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 265">Table 265</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 266">Table 266</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 267">Table 267</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 268">Table 268</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 269">Table 269</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 270">Table 270</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 271">Table 271</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 272">Table 272</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 273">Table 273</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 274">Table 274</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 275">Table 275</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 276">Table 276</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 277">Table 277</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 278">Table 278</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 279">Table 279</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 280">Table 280</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 281">Table 281</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 666">Table 666</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 667">Table 667</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 668">Table 668</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 669">Table 669</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 670">Table 670</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 671">Table 671</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 672">Table 672</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 673">Table 673</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 674">Table 674</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 675">Table 675</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 676">Table 676</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 677">Table 677</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 678">Table 678</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 679">Table 679</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 680">Table 680</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 681">Table 681</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 682">Table 682</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 683">Table 683</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 684">Table 684</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 685">Table 685</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 686">Table 686</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 687">Table 687</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 688">Table 688</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 689">Table 689</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 690">Table 690</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 691">Table 691</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 692">Table 692</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 693">Table 693</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 694">Table 694</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 695">Table 695</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 696">Table 696</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 697">Table 697</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 698">Table 698</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 699">Table 699</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 700">Table 700</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 701">Table 701</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 702">Table 702</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 703">Table 703</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 704">Table 704</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 705">Table 705</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 706">Table 706</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 707">Table 707</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 708">Table 708</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 709">Table 709</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 710">Table 710</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 711">Table 711</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 712">Table 712</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 713">Table 713</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 714">Table 714</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 715">Table 715</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 716">Table 716</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 717">Table 717</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 718">Table 718</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 719">Table 719</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 720">Table 720</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 721">Table 721</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 722">Table 722</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 723">Table 723</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 724">Table 724</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 725">Table 725</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 726">Table 726</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 727">Table 727</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 728">Table 728</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 729">Table 729</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 730">Table 730</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 731">Table 731</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 732">Table 732</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 733">Table 733</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 734">Table 734</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 735">Table 735</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 736">Table 736</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 737">Table 737</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 738">Table 738</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 739">Table 739</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 740">Table 740</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 741">Table 741</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 742">Table 742</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 743">Table 743</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 744">Table 744</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 745">Table 745</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 746">Table 746</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 747">Table 747</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 748">Table 748</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 749">Table 749</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 750">Table 750</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 751">Table 751</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 752">Table 752</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 753">Table 753</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 754">Table 754</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 755">Table 755</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 756">Table 756</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 757">Table 757</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 758">Table 758</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 759">Table 759</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 760">Table 760</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 761">Table 761</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 762">Table 762</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 763">Table 763</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 764">Table 764</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 765">Table 765</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 766">Table 766</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 767">Table 767</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 768">Table 768</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 769">Table 769</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 770">Table 770</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 771">Table 771</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 772">Table 772</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 773">Table 773</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 774">Table 774</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 775">Table 775</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 776">Table 776</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 777">Table 777</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 778">Table 778</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 779">Table 779</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 780">Table 780</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 781">Table 781</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 782">Table 782</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 783">Table 783</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 784">Table 784</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 785">Table 785</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 846">Table 846</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 847">Table 847</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 848">Table 848</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 849">Table 849</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 850">Table 850</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 851">Table 851</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 852">Table 852</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 853">Table 853</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 854">Table 854</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 855">Table 855</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 856">Table 856</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 857">Table 857</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 858">Table 858</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 859">Table 859</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 860">Table 860</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 861">Table 861</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 862">Table 862</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 863">Table 863</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 864">Table 864</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 865">Table 865</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 866">Table 866</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 867">Table 867</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 868">Table 868</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 869">Table 869</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 870">Table 870</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 871">Table 871</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 872">Table 872</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 873">Table 873</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 874">Table 874</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 875">Table 875</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 876">Table 876</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 877">Table 877</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 878">Table 878</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 879">Table 879</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 880">Table 880</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 881">Table 881</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 882">Table 882</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 883">Table 883</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 884">Table 884</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 885">Table 885</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 886">Table 886</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 887">Table 887</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 888">Table 888</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 889">Table 889</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 890">Table 890</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 891">Table 891</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 892">Table 892</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 893">Table 893</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 894">Table 894</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 895">Table 895</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 896">Table 896</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 897">Table 897</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 898">Table 898</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 899">Table 899</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 900">Table 900</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 901">Table 901</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 902">Table 902</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 903">Table 903</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 904">Table 904</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 905">Table 905</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 906">Table 906</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 907">Table 907</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 908">Table 908</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 909">Table 909</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 910">Table 910</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 911">Table 911</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 912">Table 912</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 913">Table 913</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 914">Table 914</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 915">Table 915</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 916">Table 916</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 917">Table 917</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 918">Table 918</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 919">Table 919</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 920">Table 920</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 921">Table 921</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 922">Table 922</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 923">Table 923</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 924">Table 924</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 925">Table 925</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 926">Table 926</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 927">Table 927</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 928">Table 928</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 929">Table 929</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 930">Table 930</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 931">Table 931</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 932">Table 932</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 933">Table 933</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 934">Table 934</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 935">Table 935</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 936">Table 936</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 937">Table 937</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 938">Table 938</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 939">Table 939</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 940">Table 940</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 941">Table 941</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 942">Table 942</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 943">Table 943</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 944">Table 944</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 945">Table 945</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 946">Table 946</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 947">Table 947</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 948">Table 948</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 949">Table 949</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 950">Table 950</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 951">Table 951</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 952">Table 952</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 953">Table 953</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 954">Table 954</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 955">Table 955</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 956">Table 956</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 957">Table 957</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 958">Table 958</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 959">Table 959</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 960">Table 960</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 961">Table 961</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 962">Table 962</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 963">Table 963</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 964">Table 964</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 965">Table 965</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 210">Table 210</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 211">Table 211</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 212">Table 212</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 213">Table 213</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 214">Table 214</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 215">Table 215</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 216">Table 216</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 217">Table 217</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 218">Table 218</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 282">Table 282</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 283">Table 283</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 284">Table 284</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 285">Table 285</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 286">Table 286</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 287">Table 287</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 288">Table 288</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 289">Table 289</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 290">Table 290</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 786">Table 786</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 787">Table 787</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 788">Table 788</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 789">Table 789</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 790">Table 790</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 791">Table 791</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 792">Table 792</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 793">Table 793</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 794">Table 794</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 795">Table 795</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 796">Table 796</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 797">Table 797</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 798">Table 798</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 799">Table 799</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 800">Table 800</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 801">Table 801</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 802">Table 802</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 803">Table 803</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 804">Table 804</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 805">Table 805</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 806">Table 806</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 807">Table 807</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 808">Table 808</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 809">Table 809</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 810">Table 810</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 811">Table 811</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 812">Table 812</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 813">Table 813</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 814">Table 814</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 815">Table 815</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 816">Table 816</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 817">Table 817</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 818">Table 818</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 819">Table 819</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 820">Table 820</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 821">Table 821</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 822">Table 822</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 823">Table 823</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 824">Table 824</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 825">Table 825</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 826">Table 826</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 827">Table 827</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 828">Table 828</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 829">Table 829</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 830">Table 830</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 966">Table 966</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 967">Table 967</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 968">Table 968</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 969">Table 969</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 970">Table 970</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 971">Table 971</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 972">Table 972</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 973">Table 973</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 974">Table 974</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 975">Table 975</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 976">Table 976</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 977">Table 977</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 978">Table 978</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 979">Table 979</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 980">Table 980</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 981">Table 981</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 982">Table 982</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 983">Table 983</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 984">Table 984</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 985">Table 985</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 986">Table 986</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 987">Table 987</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 988">Table 988</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 989">Table 989</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 990">Table 990</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 991">Table 991</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 992">Table 992</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 993">Table 993</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 994">Table 994</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 995">Table 995</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 996">Table 996</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 997">Table 997</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 998">Table 998</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 999">Table 999</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1000">Table 1000</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1001">Table 1001</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1002">Table 1002</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1003">Table 1003</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1004">Table 1004</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1005">Table 1005</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1006">Table 1006</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1007">Table 1007</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1008">Table 1008</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1009">Table 1009</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1010">Table 1010</a>) </ul><br/>

Fiducial phase-space cross-section at particle level.

$p_{T}^{t}$ absolute differential cross-section at particle level.

More…