Version 2
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alekseev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1046-1077, 2014.
Inspire Record 1278730 DOI 10.17182/hepdata.64754

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

17 data tables

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of XB. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of Z. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of PT(HADRON). The errors are statistical and systematic.

More…

Version 2
The Spin-dependent Structure Function of the Proton g_1^p and a Test of the Bjorken Sum Rule

The COMPASS collaboration Alekseev, M.G. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 690 (2010) 466-472, 2010.
Inspire Record 843494 DOI 10.17182/hepdata.61588

The inclusive double-spin asymmetry, $A^p_1$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range $Q^2 > 1 (GeV/c)^2, 0.004 < x < 0.7$ and improve the statistical precision of $g^p_1(x)$ by a factor of two in the region $x < 0.02$. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function $g^{NS}_1(x,Q^2)$. The isovector quark density, $\Delta_{q3}(x,Q^2)$, is evaluated from a NLO QCD fit of $g^{NS}_1$. The first moment of $\Delta_{q3}$ is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants $|g_A/g_V$ = $1.28\pm 0.07(stat)\pm 0.10$(syst).

3 data tables

Values of A1P and G1P as a function of X with corresponding average values of Q**2.

Values of $A_1^p$ and $g_1^p$ as a function of $x$ with corresponding average values of $Q^2$.

Values of $g_1^p$ for the 2007 COMPASS proton data at 160 GeV in ($x$, $Q^2$) bins.


Final COMPASS results on the deuteron spin-dependent structure function $g_1^{\rm d}$ and the Bjorken sum rule

The COMPASS collaboration Adolph, C. ; Aghasyan, M. ; Akhunzyanov, R. ; et al.
Phys.Lett.B 769 (2017) 34-41, 2017.
Inspire Record 1501480 DOI 10.17182/hepdata.78374

Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.

6 data tables

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.

Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.

More…

Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

The Super-Kamiokande collaboration Richard, E. ; Okumura, K. ; Abe, K. ; et al.
Phys.Rev.D 94 (2016) 052001, 2016.
Inspire Record 1401192 DOI 10.17182/hepdata.76912

A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\nu}_e+{\bar{\nu}}_e$ and ${\nu}_{\mu}+{\bar{\nu}}_{\mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${\nu}_e$ and ${\nu}_{\mu}$ samples at 8.0 {\sigma} and 6.0 {\sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {\sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma} level.

2 data tables

Electron neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.

Muon neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.


The Spin Structure Function $g_1^{\rm p}$ of the Proton and a Test of the Bjorken Sum Rule

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Phys.Lett.B 753 (2016) 18-28, 2016.
Inspire Record 1357198 DOI 10.17182/hepdata.72819

New results for the double spin asymmetry $A_1^{\rm p}$ and the proton longitudinal spin structure function $g_1^{\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\rm p}(x)$ by about a factor of two in the region $x\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\Delta \Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\rm p}$. The uncertainty of $\Delta \Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{\rm A}/g_{\rm V}| = 1.22 \pm 0.05~({\rm stat.}) \pm 0.10~({\rm syst.})$, which validates the sum rule to an accuracy of about 9\%.

3 data tables

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in ($x$, $Q^2$) bins.

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^{\rm p}$ for the 2007 COMPASS data at 160 GeV in ($x$, $Q^2$) bins.


Experimental study of inclusive quasielastic scattering of electrons on $^{4}$He nuclei

Dementy, S.V. ;
Sov.J.Nucl.Phys. 48 (1988) 389-394, 1988.
Inspire Record 1392557 DOI 10.17182/hepdata.70784

None

2 data tables

No description provided.

No description provided.


Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Eur.Phys.J.C 73 (2013) 2531, 2013.
Inspire Record 1236358 DOI 10.17182/hepdata.61432

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

48 data tables

PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.

More…

Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 713 (2012) 10-16, 2012.
Inspire Record 1090927 DOI 10.17182/hepdata.58899

First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.

6 data tables

The measured transverse asymmetry from the proton target as a function of the variable X. Mean values are also given for the variables Q**2[GeV^2], Y, Z, M[GeV], M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN.

The measured transverse asymmetry from the proton target as a function of the variable Z. Mean values are also given for the variables Q**2[GeV^2], Y, X, M[GeV], M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN.

The measured transverse asymmetry from the proton target as a function of the variable M. Mean values are also given for the variables Q**2[GeV^2], Y, Z, X, M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN Note that the data in the last bin (>1.5) does not contribute to the X and Z distributions.

More…

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

57 data tables

F2 measurements for a Q**2 of 0.175 GeV**2.

F2 measurements for a Q**2 of 0.225 GeV**2.

F2 measurements for a Q**2 of 0.275 GeV**2.

More…