A measurement of the $K^{+} \to \pi^{+} \mu^{+} \mu^{-}$ decay

The NA62 collaboration Cortina Gil, Eduardo ; Potrebenikov, Yuri ; Kleimenova, Alina ; et al.
JHEP 11 (2022) 011, 2022.
Inspire Record 2150453 DOI 10.17182/hepdata.135498

A sample of 2.8 × 10$^{4}$K$^{+}$ → π$^{+}$μ$^{+}$μ$^{−}$ candidates with negligible background was collected by the NA62 experiment at the CERN SPS in 2017–2018. The model-independent branching fraction is measured to be (9.15 ± 0.08) × 10$^{−8}$, a factor three more precise than previous measurements. The decay form factor is presented as a function of the squared dimuon mass. A measurement of the form factor parameters and their uncertainties is performed using a description based on Chiral Perturbation Theory at $ \mathcal{O} $(p$^{6}$).

2 data tables

Reconstructed $K^+ \to \pi^+ \mu^+ \mu^-$ differential decay width. Only statistical errors are provided. The 4-body differential decay width (shown in green in Figure 3-left) is, in general, required to fit these data points; fitting the squared modulus of the form factor may therefore be preferable.

Reconstructed squared modulus of the $K^+ \to \pi^+ \mu^+ \mu^-$ form factor. Only statistical errors are provided.


Measurement of the $\pi^0$ electromagnetic transition form factor slope

The NA62 collaboration Lazzeroni, C. ; Lurkin, N. ; Romano, A. ; et al.
Phys.Lett.B 768 (2017) 38-45, 2017.
Inspire Record 1506406 DOI 10.17182/hepdata.77001

The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the $\pi^0$ electromagnetic transition form factor slope parameter from $1.11\times10^{6}$ fully reconstructed $K^\pm \to \pi^\pm \pi^0_D, \pi^0_D \to e^+ e^-\gamma$ events is reported. The measured value $a = (3.68 \pm 0.57)\times10^{-2}$ is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

1 data table

Number of reconstructed data events and MC events as a function of the Dalitz kinematic variable $x=(M_{ee}/M_{\pi^0})^2$. The MC events are reweighted to correspond to a TFF slope a=0. The MC sample is not normalized to the size of the data. The values of $x$ quoted in the table are the barycenters of the 50 variable size bins.