Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 107 (2011) 142301, 2011.
Inspire Record 871818 DOI 10.17182/hepdata.146014

We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.

10 data tables

$J/\psi$ $B_{ll}$ $dN/dy$ in $p+p$ collisions as a function of rapidity. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)

$J/\psi$ $B_{ll}$ $dN/dy$ in $d$+Au collisions as a function of rapidity. The $d$+Au yields are divided by the average number of nucleon-nucleon collisions $\langle N_{coll}$(0-100%)$\rangle$ = 7.6. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)

Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ invariant yields at $\sqrt{s}$=200 GeV. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)

More…

Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{NN}}=200$ GeV Au$+$Au collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064911, 2018.
Inspire Record 1624209 DOI 10.17182/hepdata.144180

We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.

12 data tables

Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.

Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.

Correlation strength parameter $\lambda$ versus average $m_T$ of the pair, for 0%-30% centrality collisions. Statistical and systematic uncertainties are shown as bars and boxes.

More…

Cross Section and Parity Violating Spin Asymmetries of $W^\pm$ Boson Production in Polarized $p+p$ Collisions at $\sqrt{s}=500$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 106 (2011) 062001, 2011.
Inspire Record 866922 DOI 10.17182/hepdata.143617

Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \sqrt{s}=500\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\pm} to the light quarks. The observed electron and positron yields were used to estimate W^\pm boson production cross sections equal to \sigma(pp \to W^+ X) \times BR(W^ \to \nu_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and \sigma(pp \to W^{-}X) \times BR(W^\to e^-\bar{\nu_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.

3 data tables

The spectra of positive and negative candidates before and after an isolation cut. The computation of the background before the isolation cut is described in the text. The background band after the isolation cut is computed by scaling the background before the isolation cut by the isolation cut efficiency measured in the background region (12< $p_T$ <20GeV/$c$). The systematic errors include uncertainties in the photon conversion probability, the background normalization, and the background extrapoltion to $p_T$ > 30 GeV/$c$.

Background subtracted spectra of positron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.

Background subtracted spectra of electron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.


J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

7 data tables

Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

More…

Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at $\sqrt{s}=$200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 90 (2014) 012006, 2014.
Inspire Record 1268155 DOI 10.17182/hepdata.143306

Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $\sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $\sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $\sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.

13 data tables

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.1 < |\eta| < 3.5$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.5 < |\eta| < 3.8$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s}$ = 62.4 GeV as function of transverse momentum $p_T$.

More…

Production of omega mesons in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044902, 2011.
Inspire Record 900308 DOI 10.17182/hepdata.143307

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.

34 data tables

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

More…

Closing the Door for Dark Photons as the Explanation for the Muon g-2 Anomaly

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 031901, 2015.
Inspire Record 1313628 DOI 10.17182/hepdata.143253

The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_\mu$ deviates from SM calculations by 3.6$\sigma$. Several theoretical models attribute this to the existence of a "dark photon," an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $\pi^0,\eta \rightarrow \gamma e^+e^-$ decays and obtained upper limits of $\mathcal{O}(2\times10^{-6})$ on $U$-$\gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$\gamma$ mixing parameter space that can explain the $(g-2)_\mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.

5 data tables

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

More…