Date

Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 061801, 2015.
Inspire Record 1317640 DOI 10.17182/hepdata.66763

A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.

6 data tables match query

Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".

Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.

Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.

More…

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

19 data tables match query

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

Simultaneous coupling measurement $\kappa_V/\kappa_f$

More…

Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 798 (2019) 134952, 2019.
Inspire Record 1737724 DOI 10.17182/hepdata.88899

A statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9 fb$^{-1}$ collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W' and Z' resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at 95% confidence level of heavy vector bosons is extended to 4.5 TeV as compared to 3.8 TeV determined from the best individual channel. This excluded mass increases to 5.0 TeV if the resonances couple predominantly to fermions.

0 data tables match query

Study of J/$\psi$ meson production from jet fragmentation in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 804 (2020) 135409, 2020.
Inspire Record 1757506 DOI 10.17182/hepdata.90639

A study of the production of prompt J/$\psi$ mesons contained in jets in proton-proton collisions at $\sqrt{s} =$ 8 TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{-1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/$\psi$ meson and the jet is used to test whether the J/$\psi$ meson is part of the jet. The analysis shows that most prompt J/$\psi$ mesons with energy above 15 GeV and rapidity $|y|<$ 1 are contained in jets with pseudorapidity $|\eta_{\text{jet}}|$ $<$ 1. The differential distributions of the probability to have a J/$\psi$ meson contained in a jet as a function of jet energy for a fixed J/$\psi$ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/$\psi$ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/$\psi$ production using nonrelativistic quantum chromodynamics.

0 data tables match query

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

0 data tables match query

Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 778 (2018) 101-127, 2018.
Inspire Record 1609262 DOI 10.17182/hepdata.83194

A search for the production of Higgs boson pairs in proton-proton collisions at a centre-of-mass energy of 13 TeV is presented, using a data sample corresponding to an integrated luminosity of 35.9 inverse femtobarns collected with the CMS detector at the LHC. Events with one Higgs boson decaying into two bottom quarks and the other decaying into two tau leptons are explored to investigate both resonant and nonresonant production mechanisms. The data are found to be consistent, within uncertainties, with the standard model background predictions. For resonant production, upper limits at the 95% confidence level are set on the production cross section for Higgs boson pairs as a function of the hypothesized resonance mass and are interpreted in the context of the minimal supersymmetric standard model. For nonresonant production, upper limits on the production cross section constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to about 30 (25) times the prediction of the standard model.

4 data tables match query

Upper limits at the 95% CL for nonresonant HH production with anomalous lambda_HHH and yt couplings

Upper limits at the 95% CL for nonresonant HH production with anomalous couplings (shape benchmarks)

Upper limits at the 95% CL for nonresonant HH production with anomalous lambda_HHH and yt couplings, compared for the decay channels investigated

More…

Observation of the production of three massive gauge bosons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 151802, 2020.
Inspire Record 1802096 DOI 10.17182/hepdata.95926

The first observation is reported of the combined production of three massive gauge bosons (VVV with V = W,Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137 fb$^{-1}$. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02 $^{+0.26}_{-0.23}$. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.

2 data tables match query

Best fit values of the signal strengths for the BDT-based analyses (blue solid circles) and the sequential-cut analyses (black open circles). The error bars represent the total uncertainty. For ZZZ production, a 95% confidence level upper limit is shown. The stated numerical values correspond to the BDT-based analysis.

Measured cross sections obtained with the BDT-based analyses. The uncertainties listed are statistical and systematic. For the results listed in the left (right) half of the table, Higgs boson contributions are counted as signal (background). The VVV cross section is calculated from the fit for \mu_{comb}. For ZZZ production, 95% confidence level upper limits are reported.


Observation of top quark production in proton-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 242001, 2017.
Inspire Record 1624694 DOI 10.17182/hepdata.79668

The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt(s[NN]) = 8.16 TeV. The measurement is performed using events with exactly one isolated electron or muon and at least four jets. The data sample corresponds to an integrated luminosity of 174 inverse nanobarns. The significance of the tt-bar signal against the background-only hypothesis is above five standard deviations. The measured cross section is sigma[tt-bar] = 45 +/- 8 nb, consistent with predictions from perturbative quantum chromodynamics.

7 data tables match query

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 0 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 1 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the $\geq$2 b category after all selections. The error bars indicate the statistical uncertainties.

More…

Evidence for top quark production in nucleus-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

1 data table match query

Inclusive $\mathrm{t\bar{t}}$ cross sections measured with two methods, relying on the leptonic information alone ($2\ell_{\mathrm{OS}}$), and the second one exploits, in addition, the presence of bottom quarks ($2\ell_{\mathrm{OS}}+N_{\mathrm{b-tag}}$), in the combined $\mathrm{e}^+\mathrm{e}^-$, $\mu^+\mu^-$, and $\mathrm{e}^\pm\mu^\mp$ final states in PbPb collisions at 5.02 TeV, and pp results at $\sqrt{\smash[b]{s}}=5.02$ TeV (scaled by $A^2$) from JHEP 03 (2018) 115. The measurements are compared with theoretical predictions at NNLO+NNLL accuracy in QCD. The inner (outer) experimental uncertainty bars include statistical (statistical and systematic, added in quadrature) uncertainties. The inner (outer) theoretical uncertainty bands correspond to nuclear or free-nucleon PDF (PDF and scale, added in quadrature) uncertainties.


Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 121803, 2019.
Inspire Record 1704939 DOI 10.17182/hepdata.89935

This Letter describes a search for Higgs boson pair production using the combined results from four final states: bb$\gamma\gamma$, bb$\tau\tau$, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250-3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

10 data tables match query

Expected and observed 95\% \CL exclusion limits on the HH production signal strength for the different channels and their combination.

Expected and observed 95\% \CL exclusion limits on the HH production cross section as a function of the k_lambda parameter.

Expected and observed 95\% \CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons.

More…