First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Akerlof, C.W. ; et al.
Phys.Rev.Lett. 131 (2023) 041002, 2023.
Inspire Record 2107834 DOI 10.17182/hepdata.144760

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

A measurement of the Coulomb dissociation of B-8 at 254-MeV/nucleon and the B-8 solar neutrino flux.

Iwasa, N. ; Boue, F. ; Surowka, G. ; et al.
Phys.Rev.Lett. 83 (1999) 2910-2913, 1999.
Inspire Record 507363 DOI 10.17182/hepdata.50399

We have measured the Coulomb dissociation of 8B into 7Be and proton at 254 MeV/nucleon using a large-acceptance focusing spectrometer. The astrophysical S17 factor for the 7Be(p,gamma)8B reaction at E{c.m.} = 0.25-2.78 MeV is deduced yielding S17(0)=20.6 \pm 1.2 (exp.) \pm 1.0 (theo.) eV-b. This result agrees with the presently adopted zero-energy S17 factor obtained in direct-reaction measurements and with the results of other Coulomb-dissociation studies performed at 46.5 and 51.2 MeV/nucleon.

1 data table

S17(0) = E * SIG * EXP(CONST(C=ZOMMERFELD PARAMETER)). CONST(C=ZOMMERFELD PARAMETER) = 31.29*Z1*Z2*SQRT(M/E), where Z1 and Z2 are the nuclear charges of the interacting particles, M is the reduced mass, E is the center-of-mass energy. P BE7 reaction is extrapolation to inverse kinematics.