The analyzing power AN in inclusive π0 production has been measured with use of the new 185-GeV/c Fermilab polarized proton beam. We obtain the value AN=0.10±0.03 for π0's in the kinematic region 0.2<xF<0.8 and 0.3<pT<1.2 GeV/c. In certain models of particle production this suggests that the spin of the proton is carried by its valence quarks.
No description provided.
No description provided.
Individual polarisation measurements.
Asymmetries A 0 n have been measured at LEAR for s¯s elastic scattering for 15 beam momenta from 497 to 1550 MeV/ c .
No description provided.
No description provided.
No description provided.
The np and the pp analyzing powers A oono d and spin correlations A oonn d and A oosk d were measured simultaneously using the SATURNE II polarized deuteron beam at 0.744 and 0.794 GeV/nucleon. The results for the pp observables coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power A oono d and spin correlations A oonn d and A oosk d are equal to those for scattering of free polarized neutrons. The np data cover the angular region 95°⩽ θ CM ⩽122°. Our results for A oono d (np) confirm the phase-shift analysis predictions but spin correlations A oonn d (np) and A oosk d (np) have never been measured in this energy region and will considerably affect the PSA solution. Present results allow conclusions about the angular dependence near the minimum of A oono (np) and A oonn (np) in the vicinity of 0.8 GeV.
No description provided.
No description provided.
No description provided.
The Brookhaven Alternating Gradient Synchrotron polarized proton beam incident on a beryllium target was used for inclusive Λ production at beam momenta of 13.3 and 18.5 GeV/c. The beam polarization was transverse to the beam direction with magnitude 0.63 at 13.3 GeV/c and 0.40 at 18.5 GeV/c. The Λ polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power AN and spin transfer DNN of the Λ’s were both measured and compared with a hyperon-polarization model in which the polarization arises from a Thomas-precession effect. There is good agreement with its predictions: AN=0 and DNN=0. In particular, our measurement of 〈DNN〉=-0.009±0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model’s use of SU(6) wave functions to form final-state hadrons from beam fragments and sea quarks. The presence of substantial KS samples at both beam momenta and Λ¯’s at 18.5 GeV/c prompted a measurement of their analyzing powers, which yielded AN(KS)=-0.094±0.012 at 13.3 GeV/c beam momentum and -0.076±0.015 at 18.5 GeV/c, and AN(Λ¯)=0.03±0.10.
No description provided.
No description provided.
No description provided.
Forward angular distributions of the analysing power for the pp→d π + reaction have been measured at six energies T p =1.2, 1.4, 1.6, 1.8, 2.0, 2.3 GeV. A strong energy dependence is observed for A y 0 ( t =0) and A y 0 ( θ CM π =90°). The data are compared with the backward angular distributions previously published and suggest the existence of a resonant state in the pp system at the approximate energy of 2.7 GeV.
No description provided.
No description provided.
No description provided.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oonn (pp) and the analyzing power A oono (pp) have been measured in the angular region 45°< θ CM <90° at 0.834, 0.874, 0.934, 0.995 and 1.095 GeV beam kinetic energy using the SATURNE II polarized proton beam incident on the polarized proton target.
No description provided.
No description provided.
No description provided.
The analysis of exclusive neutral strange particle production in the reactions π − p → K° Λ + K° Σ ° and p p → Λ Λ + Λ Σ° + c.c. at 3.15, 4.95, 7.9 and 12 GeV/ c yielded the differential cross section distributions up to about 90° c.m.s. scattering angle and the Λ-particle polarization at large transverse momentum. Applying a fit to d σ /d t ∞ s − n resulted in n = 8.6 ± 0.9 for the K° Λ + K° Σ° final state which is compatible with the quark counting rule n = 8 for meson-baryon reactions. The average Λ polarization around t = −1.6 (GeV/ c ) 2 was P Λ = 0.79 ± 0.17 at 3.15 GeV/ c beam energy.
No description provided.
No description provided.
No description provided.
The angular distributions of the analyzing power for the pp → dπ + reaction have been measured at seven energies T p = 1.2, 1.4, 1.6, 1.7, 1.8, 2.0 and 2.3 GeV. The data show a strong energy dependence with a structure centered at √ s π d = 2.66 GeV. Possible interpretations are presented in the frame of the OPE model and involving the question of the excitation of a dibaryon resonance.
No description provided.
No description provided.
No description provided.