Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Energy scan of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections and evidence for the $\Upsilon(11020)$ decays into charged bottomonium-like states

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 117 (2016) 142001, 2016.
Inspire Record 1389855 DOI 10.17182/hepdata.74710

Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.

1 data table

Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.


Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Amplitude analysis of e+e- => Y(nS)pi+pi- at sqrt(s)=10.865 GeV

The Belle collaboration Garmash, A. ; Bondar, A. ; Kuzmin, A. ; et al.
Phys.Rev.D 91 (2015) 072003, 2015.
Inspire Record 1283743 DOI 10.17182/hepdata.64697

We report results on studies of the e+e- annihilation into three-body Y(nS)pi+pi- (n=1,2,3) final states including measurements of cross sections and the full amplitude analysis. The cross sections measured at sqrt(s)=10.865 GeV and corrected for the initial state radiation are sigma(e+e-=>Y(1S)pi+pi-)=(2.27+-0.12+-0.14) pb, sigma(e+e-=>Y(2S)pi+pi-)=(4.07+-0.16+-0.45) pb, and sigma(e+e-=>Y(3S)pi+pi-)=(1.46+-0.09+-0.16) pb. Amplitude analysis of the three-body Y(nS)pi+pi- final states strongly favors I^G(J^P)=1^+(1^+) quantum-number assignments for the two bottomonium-like Zb+- states, recently observed in the Y(nS)pi+- and hb(mP)pi+- (m=1,2) decay channels. The results are obtained with a $121.4 1/fb data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

9 data tables

The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(1S) PI+ PI-.

The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(2S) PI+ PI-.

The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(3S) PI+ PI-.

More…

Measurement of the Lepton Forward-Backward Asymmetry in Inclusive $B \rightarrow X_s \ell^+ \ell^-$ Decays

The Belle collaboration Sato, Y. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 93 (2016) 032008, 2016.
Inspire Record 1283183 DOI 10.17182/hepdata.64698

We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.

1 data table

The value of ASYM(FB) obtained from the fit in each of the four Q**2 bins.


Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Precision measurement of charged pion and kaon multiplicities in electron-positron annihilation at Q = 10.52 GeV

The Belle collaboration Leitgab, M. ; Seidl, R. ; Grosse Perdekamp, M. ; et al.
Phys.Rev.Lett. 111 (2013) 062002, 2013.
Inspire Record 1216515 DOI 10.17182/hepdata.62276

Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.

1 data table

Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).


Measurement of cross sections of exclusive $e^+ e^- \to VP$ processes at $\sqrt{s}=10.58$ GeV

The Belle collaboration Belous, K. ; Shapkin, M. ; Adachi, I. ; et al.
Phys.Lett.B 681 (2009) 400-405, 2009.
Inspire Record 823878 DOI 10.17182/hepdata.52944

The cross sections for the reactions $e^+e^- \to \phi\eta, \quad \phi\eta', \quad \rho\eta, \quad \rho\eta'$ have been measured using a data sample of 516 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. The corresponding values of the cross sections are: $1.4 \pm 0.4 \pm 0.1$ fb $(\phi\eta)$, $5.3 \pm 1.1 \pm 0.4$ fb $(\phi\eta')$, $3.1 \pm 0.5 \pm 0.1$ fb $(\rho\eta)$ and $3.3 \pm 0.6 \pm 0.2$ fb $(\rho\eta')$. The energy dependence of the cross sections is presented using Belle measurements together with those of CLEO and BaBar.

1 data table

Radiativity corrected cross section.


Measurement of the e+ e- ---> b anti-b cross section between s**(1/2) = 10.54-GeV and 11.20-GeV

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Karyotakis, Y. ; et al.
Phys.Rev.Lett. 102 (2009) 012001, 2009.
Inspire Record 797507 DOI 10.17182/hepdata.18666

We report e+e- --> b anti-b cross section measurements by the BABAR experiment performed during an energy scan in the range of 10.54 to 11.20 GeV at the PEP-II e+e- collider. A total relative error of about 5% is reached in more than three hundred center-of-mass energy steps, separated by about 5 MeV. These measurements can be used to derive precise information on the parameters of the Y(10860) and Y(11020) resonances. In particular we show that their widths may be smaller than previously measured.

1 data table

Measured values of R(b) from the detailed scan in SQRT(S),. where R(b) is the ratio between the number of observed E+ E- --> B BBAR(GAMMA) normalized to luminosity divided to the bare dimuon cross-section.