Transverse-target-spin asymmetry in exclusive $\omega$-meson electroproduction

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 75 (2015) 600, 2015.
Inspire Record 1391139 DOI 10.17182/hepdata.75465

Hard exclusive electroproduction of $\omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $\pi\omega$ transition form factor.

4 data tables

The amplitudes of the five sine and two cosine modulations as determined in the entire kinematic region. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

The definition of intervals and the mean values of the kinematic variables.

Results on the kinematic dependences of the five asymmetry amplitudes $A_{UT}$ and two amplitudes $A_{UU}$. The first two columns correspond to the $-t'$ intervals $0.00 - 0.07 - 0.20$ GeV$^2$ and the last two columns to the $Q^{2}$ intervals $1.00 - 1.85 - 10.00$ GeV$^2$. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

More…

Study of $\pi^0$ pair production in single-tag two-photon collisions

The Belle collaboration Masuda, M. ; Uehara, S. ; Watanabe, Y. ; et al.
Phys.Rev.D 93 (2016) 032003, 2016.
Inspire Record 1390112 DOI 10.17182/hepdata.71443

We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.

10 data tables

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.

$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.

More…

Energy scan of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections and evidence for the $\Upsilon(11020)$ decays into charged bottomonium-like states

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 117 (2016) 142001, 2016.
Inspire Record 1389855 DOI 10.17182/hepdata.74710

Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.

1 data table

Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.


Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Angular analysis and differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 179, 2015.
Inspire Record 1380188 DOI 10.17182/hepdata.73774

An angular analysis and a measurement of the differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$ are presented, using data corresponding to an integrated luminosity of $3.0\, {\rm fb^{-1}}$ of $pp$ collisions recorded by the LHCb experiment at $\sqrt{s} = 7$ and $8\, {\rm TeV}$. Measurements are reported as a function of $q^{2}$, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range $1<q^2<6\, {\rm GeV}^{2}/c^{4}$, where precise theoretical calculations are available, the differential branching fraction is found to be more than $3\,\sigma$ below the Standard Model predictions.

3 data tables

The signal yields for $B_s^0 \to \phi\mu^+\mu^-$ decays, as well as the differential branching fraction relative to the normalisation mode and the absolute differential branching fraction, in bins of $q^2$. The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the branching fraction of the normalisation mode.

(Top) $CP$-averaged angular observables $F_{\rm L}$ and $S_{3,4,7}$ obtained from the unbinned maximum likelihood fit.

(Bottom) $CP$ asymmetries $A_{5,6,8,9}$ obtained from the unbinned maximum likelihood fit.


Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Measurement of $e^+e^- \to \gamma\chi_{cJ}$ via initial state radiation at Belle

The Belle collaboration Han, Y.L. ; Wang, X.L. ; Yuan, C.Z. ; et al.
Phys.Rev.D 92 (2015) 012011, 2015.
Inspire Record 1376480 DOI 10.17182/hepdata.73745

The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.

3 data tables

Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.

Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.

Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.


Measurement of the exclusive $\Upsilon$ production cross-section in $pp$ collisions at $\sqrt{s}=$7 TeV and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 084, 2015.
Inspire Record 1373746 DOI 10.17182/hepdata.72986

A study is presented of central exclusive production of $\Upsilon(nS)$ states, where the $\Upsilon(nS)$ resonances decay to the $\mu^+\mu^-$ final state, using $pp$ collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range $2<y(\Upsilon)<4.5$ where the muons are reconstructed in the pseudorapidity range $2<\eta(\mu^\pm)<4.5$. The data sample corresponds to an integrated luminosity of 2.9 fb$^{-1}$ and was collected at centre-of-mass energies of $7$ TeV and $8$ TeV. The measured $\Upsilon(1S)$ and $\Upsilon(2S)$ production cross-sections are \begin{eqnarray} \sigma(pp \to p\Upsilon(1S)p) &=& 9.0 \pm 2.1 \pm 1.7\textrm{ pb and}\nonumber\\ \sigma(pp \to p\Upsilon(2S)p) &=& 1.3 \pm 0.8 \pm 0.3\textrm{ pb},\nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. The $\Upsilon(1S)$ cross-section is also measured as a function of rapidity and is found to be in good agreement with Standard Model predictions. An upper limit is set at 3.4 pb at the 95\% confidence level for the exclusive $\Upsilon(3S)$ production cross-section, including possible contamination from $\chi_b(3P)\to\Upsilon(3S)\gamma$ decays.

2 data tables

Production cross-section for the $\Upsilon(1S)$ resonance in ranges of $\Upsilon(1S)$ rapidity, where the muons are required to lie in the pseudorapidity range $2 < \eta(\mu^{\pm}) < 4.5$. The first uncertainties are statistical and the second ones are systematic.

Differential production cross-section for $\Upsilon(1S)$, where the data have been corrected for the effect of the LHCb geometrical acceptance. The statistical and systematic uncertainties are combined in quadrature.


Measurement of the forward $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s}$ = 7 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2015) 039, 2015.
Inspire Record 1373300 DOI 10.17182/hepdata.2114

A measurement of the production cross-section for $Z$ bosons that decay to muons is presented. The data were recorded by the LHCb detector during $pp$ collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb$^{-1}$. The cross-section is measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$ with transverse momenta $p_{T} > 20$ GeV/c. The dimuon mass is restricted to $60 < M_{\mu^{+}\mu^{-}} < 120$ GeV/c$^{2}$. The measured cross-section is $$\sigma_{Z\rightarrow\mu^{+}\mu^{-}} = (76.0 \pm 0.3 \pm 0.5 \pm 1.0 \pm 1.3) \, \text{pb}$$ where the uncertainties are due to the sample size, systematic effects, the beam energy and the luminosity. This result is in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. The cross-section is also measured differentially as a function of kinematic variables of the $Z$ boson. Ratios of the production cross-sections of electroweak bosons are presented using updated LHCb measurements of $W$ boson production. A precise test of the Standard Model is provided by the measurement of the ratio $$\frac{\sigma_{W^{+}\rightarrow\mu^{+}\nu_{\mu}} + \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}_{\mu}}}{\sigma_{Z\rightarrow\mu^{+}\mu^{-}}} = 20.63\pm0.09\pm0.12\pm0.05,$$ where the uncertainty due to luminosity cancels.

11 data tables

Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of PHI*. The uncertainties are statistical, systematic, beam and luminosity.

More…