A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function $g_1~n(x,Q~2)$ in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized $~3$He internal gas target. The data cover the kinematic range $0.023<x<0.6$ and $1 (GeV/c)~2 < Q~2 <15 (GeV/c)~2$. The integral $\int_{0.023}~{0.6} g_1~n(x) dx$ evaluated at a fixed $Q~2$ of $2.5 (GeV/c)~2$ is $-0.034\pm 0.013(stat.)\pm 0.005(syst.)$. Assuming Regge behavior at low $x$, the first moment $\Gamma_1~n=\int_0~1 g_1~n(x) dx$ is $-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.)$.
No description provided.
Data extrapolated to full x region. Second systematic error is the error on this extrapolation.
We present a study of the inclusive ω and η′ production based on 3.1 million hadronic Z decays recorded with the L3 detector at LEP during 1991–1994. The production rates per hadronic Z decay have been measured to be 1.17±0.17 ω mesons and 0.25±0.04 η′ mesons. The production rates and the differential cross sections have been compared with predictions of the JETSET and the HERWIG Monte Carlo models. We have observed that the differential cross sections can be described by an analytical quantum chromodynamics calculation.
Final production rates per hadronic Z0 decay.
Corrected production rates from the omega --> pi+ pi- p0 decay mode. Extrapolation to full x range.
Corrected production rates from the etaprime --> pi+ pi- eta decay mode. Extrapolation to full x range.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.
No description provided.
No description provided.
No description provided.
Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm
No description provided.
No description provided.
No description provided.
The inclusive production of η mesons has been studied using 1.6 million hadronic Z decays collected with the L3 detector. The η multiplicity per event, the multiplicity for two-jet and three-jet events separately, and the multiplicity in each jet have been measured and compared with the predictions of different Monte Carlo programs. The momentum spectra of η in each jet have also been measured. We observe that the measured η momentum spectrum in quark-enriched jets agrees well with the Monte Carlo prediction while in gluon-enriched jets it is harder than that predicted by the Monte Carlo models.
No description provided.
No description provided.
No description provided.
A measurement of inclusive charged particle distributions in deep inelastic $ep$ scattering for $\gamma~* p$ centre-of-mass energies $75< W < 175$GeV and momentum transfer squared $10< Q~2 < 160$GeV$~2$ from the ZEUS detector at HERA is presented. The differential charged particle rates in the $\gamma~* p$ centre-of-mass system as a function of the scaled longitudinal momentum, $x_F$, and of the transverse momentum, $p_t~*$ and $<\!\!p_t~{*\,2}\!\!>\,\,$ , as a function of $x_F$, $W$ and $Q~2$ are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same $W$ are observed. The value of $<\!\!p_t~{*\,2}\!\!>\,\,$ for LRG events with a hadronic mass $M_X$, which excludes the forward produced baryonic system, is similar to the $<\!\!p_t~{*\,2}\!\!>\,\,$ value observed in fixed target experiments at $W \approx M_X$.
Differential multiplicites for NRG events.. XL is parallel to the virtual photon axis.
Differential multiplicites for NRG events.. PT is relative to the virtual photon axis.
Mean PT**2 for NRG events.. PT is relative to the virtual photon axis.